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Abstract

Collaborative filtering (CF) is a prevalent technique utilized
in recommender systems (RSs), and has been extensively de-
ployed in various real-world applications. A recent study in
CF focuses on improving the quality of representations from
the perspective of alignment and uniformity on the hyper-
spheres for enhanced recommendation performance. It pro-
motes alignment to increase the similarity between representa-
tions of interacting users and items, and enhances uniformity
to have more uniformly distributed user and item representa-
tions within their respective hyperspheres. However, although
alignment and uniformity are enforced by two different op-
timized objectives, respectively, they jointly constitute the
supervised signals for model training. Models trained with
only supervised signals in labeled data can inevitably overfit
the noise introduced by label sampling variance, even with
i.i.d. datasets. This overfitting to noise further compromises
the model’s generalizability and performance on unseen test-
ing data. To address this issue, in this study, we aim to mitigate
the effect caused by the sampling variance in labeled training
data to improve representation generalizability from the per-
spective of alignment and uniformity. Representations with
more generalized alignment and uniformity further lead to
improved model performance on testing data. Specifically, we
model the data as a user-item interaction bipartite graph, and
apply a graph neural network (GNN) to learn the user and item
representations. This graph modeling approach allows us to
integrate self-supervised signals into the RS, by performing
self-supervised contrastive learning on the user and item rep-
resentations from the perspective of label-irrelevant alignment
and uniformity. Since the representations are less dependent
on label supervision, they can capture more label-irrelevant
data structures and patterns, leading to more generalized align-
ment and uniformity. We conduct extensive experiments on
three benchmark datasets to demonstrate the superiority of our
framework (i.e., improved performance and faster convergence
speed). Our codes: https://github.com/zyouyang/AUPlus

Introduction
The development of recommender systems (RSs) has
been widely explored to assist in information filtering
that alleviates the data overload problem among multiple
fields (McAuley et al. 2015; Covington, Adams, and Sargin
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2016). The goal of a recommender system is to predict future
interactions given the historical interactions currently ob-
served between users and items. RSs are mainly categorized
into content-based models (Lops, De Gemmis, and Semer-
aro 2011; Tay, Luu, and Hui 2018), collaborative filtering
(CF)-based models (Schafer et al. 2007; Chen et al. 2020a;
Yang et al. 2022b; Wang et al. 2019; He et al. 2020b; Wu
et al. 2021; Lee et al. 2021; Lin et al. 2022), and hybrid mod-
els (Burke 2002; Zhang et al. 2016; Dong et al. 2017; Wang,
Shi, and Yeung 2016). In the realm of CF-based methods,
the Bayesian Personalized Ranking (BPR) loss (Rendle et al.
2009), a pairwise supervised loss function, has been widely
adopted as an optimized objective. It encourages the poste-
rior probabilities of the observed user-item interactions to
be higher than their unobserved counterparts. Models that
adopt the BPR loss as the main loss function include ma-
trix factorization (Koren, Bell, and Volinsky 2009) and other
graph-based CF methods (Ying et al. 2018; Wang et al. 2019;
Yu et al. 2019; Sun et al. 2020; He et al. 2020b). In addition to
the default BPR loss, some works adopt other objectives (We-
ston, Bengio, and Usunier 2011; Weston, Yee, and Weiss
2013; Hsieh et al. 2017) to provide training supervisions in
CF-based models.

The resurgence of contrastive learning (CL) in deep rep-
resentation learning (Chen et al. 2020b) has inspired mul-
tiple studies related to the essence of CL (Wang and Isola
2020; Gao, Yao, and Chen 2021; Yu et al. 2022; Yue et al.
2022; Qian et al. 2022; Yu et al. 2023a; Zhang et al. 2023c).
Some (Yu et al. 2022, 2023a) provide empirical evidence to
suggest that the contrastive loss in CL is the predominant
factor contributing to enhanced model generalizability. Fol-
lowing this line, from the self-supervised perspective, some
recent CF methods (Wu et al. 2021; Yu et al. 2021b; Xia et al.
2021; Lin et al. 2022) strategically design self-supervised
auxiliary contrastive tasks to jointly optimize for improved
model generalization ability. From the supervised perspective,
there also exist a recent work (Zhang et al. 2023a) that di-
rectly apply supervised contrastive loss to train the CF model.
Apart from the angle of generalizability, some other studies
in CL (Wang and Isola 2020; Gao, Yao, and Chen 2021)
focus on the quality of learned representations, and identify
two key properties, alignment and uniformity, related to the
contrastive loss. This discovery inspires DirectAU (Wang
et al. 2022), a recent CF method that disassembles supervised



contrastive loss as the alignment and uniformity loss, and di-
rectly optimizes the jointed loss to learn representations with
improved alignment and uniformity. Specifically, DirectAU
aligns the representations of observed user-item pairs via the
alignment loss, and encourages user and item presentations
to distribute uniformly in the respective hyperspheres via the
uniformity loss.

However, although the alignment and uniformity loss are
two distinct optimized objectives, they jointly constitute the
supervised signals in model training – the alignment loss
provides the collaborative filtering signals in the interactions,
and the uniformity loss prevents the model from collapsing to
a trivial solution, where all users and items have identical rep-
resentations. Since the model is trained with only supervised
signals from labeled training data, it can inevitably overfit the
noise introduced by label sampling variance, even with i.i.d.
datasets. This overfitting to noise compromises the learned
representations’ generalizability in alignment and uniformity,
and further the model performance on unseen testing data.

To address the above issue, in this study, we aim to miti-
gate the model’s overfitting to the noise caused by sampling
variance in labeled training data, and to learn representations
with more generalized alignment and uniformity. Representa-
tions with more generalized qualities further lead to improved
model performance on testing data. In particular, we propose
AU+, a framework that enhances label-irrelevant representa-
tion alignment and uniformity by performing self-supervised
CL on user and item representations. Specifically, AU+first
models the data as a user-item interaction bipartite graph, and
applies a graph neural network (GNN) to learn the user and
item representations. Then, AU+augments the user and item
presentations with the devised 0-layer embedding perturba-
tion mechanism to obtain the positive and negative view pairs.
This mechanism minimally yet effectively augments the data
without the need of tuning among the classical graph aug-
mentation operators, such as edge dropout and node dropout.
Finally, in addition to the alignment and uniformity loss cal-
culated from labeled data, AU+performs self-supervised CL
on the augmented user and item representations views to
promote label-irrelevant alignment and uniformity. With the
enhancement from self-supervised CL, the learned representa-
tions are less dependent on label supervision, and can capture
label-irrelevant data structures and patterns, leading to more
generalized qualities of alignment and uniformity. We con-
duct extensive experiments on three benchmark datasets to
demonstrate that our AU+outperforms existing CF methods
with improved performance and faster convergence speed. In
summary, the main contributions of this work are as follows:

• We introduce a hypothesis, which states that the sampling
variance in labeled training data can compromise the gen-
eralizability of learned representations. Based on the hy-
pothesis, we identify the generalizability limitation in the
existing CF method from the perspective of representation
alignment and uniformity.

• Drawing from our insights regarding the generalizability of
alignment and uniformity, we propose AU+, a framework
that mitigates the model’s overfitting to noise by perform-
ing self-supervised CL on the user and item representations

from the perspective of alignment and uniformity. Within
this framework, we devise a 0-layer embedding perturba-
tion mechanism to perform minimal yet sufficient data
augmentation, obviating the need of tuning among the clas-
sical graph augmentation operators.

• We conduct comprehensive experiments on three bench-
mark datasets to show that our AU+not only outperforms
the other baseline models, but also converges faster in train-
ing. We also present AU+’s training trajectory w.r.t. the
alignment and uniformity loss to demonstrate the improved
generalizability in alignment and uniformity.

Preliminaries
In this section, we present concepts that are closely related to
this work. Specifically, in section Graph-based Collaborative
Filtering we introduce the common paradigm of graph-based
CF methods, where the backbone of our framework belongs
to. This approach allows for the integration of self-supervised
CL, which enhances label-irrelevant alignment and unifor-
mity. Then in section Loss Function, we present the com-
mon supervised losses (i.e., the BPR loss and the supervised
CL loss) used in training RSs, as well as the auxiliary self-
supervised CL loss commonly utilized to enhance model
generalizability. Finally in section Alignment and Uniformity
in Representations, we outline the two important properties,
alignment and uniformity, originally identified in CL, and
their corresponding losses. For further demonstration pur-
poses, we briefly present how a recent CF method, namely
DirectAU (Wang et al. 2022), utilizes the two losses in their
model training.

Graph-based Collaborative Filtering
Collaborative filtering in recommendation relies on the col-
laborative relations among users who interact with the same
items to implicitly learn the representations. Specifically, let
U and I denote the set of users and items respectively. The
interaction matrix is denoted as R ∈ {0, 1}|U|×|I|, where
ruv = 1 represents an observed interaction between user u
and item v, and 0 otherwise. To extract collaborative signals,
the interaction matrix R is abstracted to a bipartite graph
G = {V, E}, where V = U ∪ I is the set of nodes and
E = {(u, v)|u ∈ U , v ∈ I, ruv = 1} is the set of edges.

GNN is widely adopted for representation learning on
graphs to capture high-order connectivity and has been uti-
lized in multiple domains for general tasks such as node
classification (Kipf and Welling 2017; Wen et al. 2022b;
Zhang et al. 2023b; Wu et al. 2022), edge prediction (Ouyang
et al. 2023), and graph classification (Wen et al. 2022a; Guo
et al. 2023; Wen et al. 2024). In addition to utility, some other
works improve GNN to improve their properties in robust-
ness (Zhang et al. 2023d; Yuan et al. 2024), fairness (Liu
et al. 2023; Jia, Zhang, and Vosoughi 2024), privacy (Liu
et al. 2024), and heterogeneity (Li, Zhang, and Zhang 2023;
Tian et al. 2023).

In general, at each layer of a GNN and for each node, the
information from the neighborhood is aggregated and then
combined with the information from the node itself. The
combined information is then passed to the next layer for



further aggregation and combination. Information received
at each layer is summarized via a readout function at last to
obtain the node embeddings. Formally, for any node i ∈ V ,
the processes of obtaining the corresponding embedding zi ∈
Rm where m is the embedding dimension, are formulated as:

z(l)i = COM(l)
(

z(l−1)
i ,AGG(l)

({
z(l−1)
j ,∀j ∈ Ni

}))
,

zi = READOUT([z(0)i , z(1)i , ..., z(L)
i ]),

(1)
where COM(·), AGG(·), READOUT(·) are neighbor com-
bination, neighbor aggregation, and readout function respec-
tively, Ni is the neighbor set of node i, z(l)i is the embedding
of node i at layer l, and L is the number of layers.

To illustrate the learning scheme, we here demonstrate the
modeling process of LightGCN (He et al. 2020b), one of the
state-of-the-art graph-based RS. Formally, at each layer of
LightGCN, the information is aggregated and read out via a
simple weighted sum defined as follows:

z(l+1)
i =

∑
j∈Ni

1√
|Ni|

√
|Nj |

z(l)j , zi =
L∑

l=0

alz
(l)
i , (2)

where al is the readout coefficient for each layer-l’s out-
put, and is conventionally set to 1/(L + 1) in this work.
After learning the node embeddings, the preference score
ŷu,v of item v to user u is calculated as ŷu,v = z⊺uzv. In-
tuitively, the more similar the two representations are, the
higher the output score is. Note that the learnable parame-
ters Θ in LightGCN are the initialized embeddings only, i.e.,
Θ = {z(0)u , z(0)v |∀u ∈ U ,∀i ∈ I}.

Loss Function
The Bayesian Personalized Ranking (BPR) loss (Rendle et al.
2009) is a pairwise supervised loss function widely adopted
in various CF-based methods (Koren, Bell, and Volinsky
2009; Wang et al. 2019; He et al. 2020b). It encourages the
predictions of the observed user-item pairs to be higher than
their unobserved counterparts. Formally, it is defined as:

LBPR = −
|U|∑
u=0

∑
v∈Nu

∑
k/∈Nu

log σ(ŷu,v − ŷu,k), (3)

where σ(·) is the sigmoid function, (u, v) ∈ E are observed
pairs, and (u, k) /∈ E are unobserved.

In addition to the BPR loss, the supervised CL loss (Khosla
et al. 2020) is also adopted in the realm of personalized
recommendation (Yang et al. 2022a; Zhang et al. 2023a) to
provide training supervisions. Specifically, the loss function
of personalized recommendation with InfoNCE (Oord, Li,
and Vinyals 2018) loss can be formulated as follows:

Ls
InfoNCE = −

∑
v∈Nu

log
exp(ŷu,v)

exp(ŷu,v)) +
∑

k/∈Nu
exp(ŷu,k)

.

(4)
The contrastive loss in self-supervised CL is widely em-

ployed in multiple graph-based CF methods in combination
with the BPR loss to improve the generalization ability of the

models (Wu et al. 2021; Yu et al. 2022; Lin et al. 2022). It
does not require labeled data, and contrasts between views
augmented from the original pairs. Formally, let zi′ , zi′′ be
the two augmented views from the node representation zi.
The self-supervised InfoNCE loss is defined as:

Lu
InfoNCE = −

∑
i∈V

log
exp(s(zi′ , zi′′)/τ)∑

j ̸=i exp(s(zi′ , zj′′)/τ))
, (5)

where s(·) is the similarity function, and is set as the cosine
similarity function in this work; τ is the the temperature
hyper-parameter in softmax function.

Alignment and Uniformity in Representations
A recent study (Wang and Isola 2020) identifies two criti-
cal properties of representations - alignment and uniformity
- that are closely related to self-supervised contrastive loss
described in Eq. 5. The alignment measures the degree of sim-
ilarity between two node representations, and the uniformity
evaluates how uniformly the user and item representations
distribute in their respective hyperspheres. A following work
in natural language processing named SimCSE (Gao, Yao,
and Chen 2021) confirms that representations with better
alignment and uniformity lead to better model performance.
Formally, given a distribution ppos of positive nodes pairs
(i, j) ∼ ppos, we align them with the alignment loss defined
as the expected distance between the positive pairs over ppos:

ℓalign = E
(zi,zj)∼ppos

∥f(zi)− f(zj)∥2, (6)

where f(·) is the L2 normalization. Given a data distribution
pdata for node pairs (i, j) ∼ pdata, based on the Gaussian
potential kernel (Cohn and Kumar 2007), the uniformity loss
is defined as the logarithm of the expected pairwise Gaussian
potential that measures how well the embeddings distribute
uniformly on the hypersphere:

ℓuniform = log E
(zi,zj)∼pdata

exp(−2∥f(zi)− f(zj)∥2). (7)

To improve alignment and uniformity of representations
in personalized recommendation, a recent work in CF named
DirectAU (Wang et al. 2022) extends the supervised CL
loss described in Eq. 4 to the alignment and uniformity loss
defined in Eq. 6 and Eq. 7, respectively. They define the
positive node pair distribution ppos as the observed inter-
acted user-item pairs: (zu, zv) ∼ ppos, where (u, v) ∈ E .
They encourage the user and item representations to dis-
tribute uniformly in their respective hyperspheres under two
data distributions: the user distribution (zu1 , zu2) ∼ puser,
where u1, u2 ∈ U , u1 ̸= u2, and the item distribution
(zv1 , zv2) ∼ pitem, where v1, v2 ∈ I, v1 ̸= v2. The align-
ment and uniformity loss in DirectAU is formulated as:

Lalign = E
(u,v)∈E

∥f(zu)− f(zv)∥2,

Luniform = log E
(u1,u2)∈U
u1 ̸=u2

exp(−2∥f(zu1
)− f(zu2

)∥2)/2 +

log E
(v1,v2)∈I
v1 ̸=v2

exp(−2∥f(zv1)− f(zv2)∥2)/2.

(8)



The two losses are then linearly combined as the supervision
loss for DirectAU to jointly optimize:

LDirectAU = Lalignment + γLuniform, (9)

where γ is the weight coefficient of Luniform.

Methodology
In this section, we aim to present our proposed framework,
namely AU+, that enhances the generalizability from the
perspective of alignment and uniformity.

Enhanced Alignment and Uniformity: AU+

While the previous CF method DirectAU is intentionally de-
signed to improve representations from the perspective of
alignment and uniformity, the optimized objectives jointly
constitutes the supervised signals for model training. This is
because the model relies on the alignment loss to learn the
collaborative filtering signals among observed interactions,
which must be optimized in combination with the uniformity
loss, which prevents the model from collapsing into a trivial
solution where all users and items have identical representa-
tions. This normalization from uniformity also exists in the
BPR loss – while it encourages representations of interacted
users and items to align to each other, it utilizes the negative
pairs to restrain the model from collapsing. Therefore, Di-
rectAU can inevitably overfit the sample variance in labeled
training data, impairing the performance on unseen testing
data. To mitigate the effect brought by the sample variance,
we propose a label-irrelevant self-supervised CL, that en-
hances the generalizability from the perspective of alignment
and uniformity.

The structure of our framework is depicted in Figure 1.
Our framework is quite simple – it consists of the supervised
and self-supervised CL part. The total losses is then defined
as the linear combination of three terms:

LAU+

= Ls
cl + λ1Lu

cl + λ2∥Θ∥2, (10)

where Ls
cl is the supervised contrastive loss that provides

supervised signals from the perspective of alignment and uni-
formity, and Lu

cl is the self-supervised contrastive loss that
promotes label-irrelevant alignment and uniformity, Θ are
the learnable parameters, λ1, λ2 are the coefficients for the
self-supervised loss and the norm of the learnable parame-
ters, respectively. To symbolise Ls

cl, in AU+we let it be the
alignment and uniformity loss defined in Eq. 8. That is, we
let Ls

cl = Lalignment + γLuniform.
Then, to utilizes self-supervised CL to promote label-

irrelevant alignment and uniformity, we model the user-item
interaction histories as a user-item bipartite graph, and adopts
LightGCN (He et al. 2020b) as the encoder to obtain the node
representations. In order to perform self-supervised CL, two
augmented node representation views are first generated, as
shown in the left side in Figure 1. The augmentation process
does not require labels, and should not impair the representa-
tions severely such that it is completely corrupted. This aug-
mentation process is conducted via our devised 0-layer pertur-
bation mechanism, which minimally yet sufficiently augment
the node representations. We detail this mechanism in the
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Figure 1: The overall framework of our proposed AU+.

following section Maximum Efficacy with Minimal Data Aug-
mentation. Then, we require views augmented from the same
node to align each other, and encourage all node views to dis-
tribute uniformly in the hypersphere. There are two ways to
fulfill the above requirements: (i) Applying the alignment and
uniformity loss defined in Eq. 6-7 to promote label-irrelevant
alignment and uniformity. Specifically, the positive node pair
distribution ppos is defined as (zi′ , zi′′) ∼ ppos, where zi′ , zi′′
are the two augmented views from the node representation zi.
The data distribution pdata in the uniformity loss is defined as
(zi′(′), zj′(′)) ∼ pdata, where zi′(′), zi′(′) are the augmented
views from the different node representation zi and zj , re-
spectively. Formally, the auxiliary loss Lu

cl is formulated as
follows:

Lu
cl = E

i∈V
∥f(zi′)− f(zi′′)∥2+

γp log E
i,j∈V
i̸=j

exp(−2∥f(zi′)− f(zj′)∥2)/2 +

γp log E
i,j∈V
i̸=j

exp(−2∥f(zi′′)− f(zj′′)∥2)/2.

(11)

We denote this variant as AU+-AU. (ii) Directly applying
the self-supervised contrastive loss defined in Eq. 5 to the
augmented views. That is, let Lu

cl = Lu
InfoNCE. This is our

designed AU+ framework.
Additionally, the classical graph augmentation operators

are also suffice the needs for node view generation. To demon-
strate the effectiveness of self-supervised CL, we define an-
other model variant named AU+-SGL, where the node rep-
resentations are augmented through edge dropout, and the
corresponding self-contrastive loss is calculated via Eq. 5.
In the following experiment section, we present the results
of the three model variants to show that AU+yields the best
performance among all.

Maximum Efficacy with Minimal Data
Augmentation
The process of data augmentation is crucial in representation
learning, as the augmented views should preserve the data
structure and patterns in the original data. In the realm of



graph augmentation, classical graph augmentation operators
are adopted (Wu et al. 2021) such as edge drop, node drop,
and random walk. Earlier work (Yu et al. 2022) finds that
such operators are not necessary, and SimCSE (Gao, Yao, and
Chen 2021) also demonstrates the feasibility of perturbing
the initialized embeddings as data augmentation. Therefore,
instead of utilizing classical graph augmentation operators to
generate the augmented node views, we devise the 0-layer
embedding perturbation mechanism that adds randomly gen-
erated noise to perturb the initialized embeddings as data
augmentation. Specifically, we perturb only the initialized
learnable embeddings with a d-dimensional random noise ∆.
Formally, the augmented view is created as follows:

z(0)u′ = z(0)u +∆′, z(0)u′′ = z(0)u +∆′′, (12)

where ∆′,∆′′ both subject to ∥∆∥2 = ϵ, ∆ = ∆̄⊙sign(z(0)u ),
and ∆̄ ∈ Rd ∼ U(0, 1). The two perturbed representa-
tions are then feed to the encoder to obtain the final per-
turbed learned embeddings. With this devised mechanism,
our AU+is able to learn representation alignment and uni-
formity through two distinct yet semantically-justified aug-
mented perspectives without tuning among the classical graph
operators.

We here additionally show how the original node repre-
sentation is modified through our augmentation mechanism.
Based on the message passing operation defined in Eq. 2, the
perturbed node representations are modified as:

Z′
AU+ =

1

L

(
Â(Z(0) +∆) + . . .+ ÂL(Z(0) +∆)

)
=
1

L

L∑
i=1

ÂiZ(0) +
1

L

L∑
i=1

Âi∆,
(13)

where Â is the normalized adjacency of the user-item bipar-
tite graph, and ∆ is the generated uniform noise added to the
initial representations. The left term 1

L

∑L
i=1 Â

iZ(0) are the
original node representations. The right term 1

L

∑L
i=1 Â

i∆
are the mean of the propagated noises through L layers. Since
the noise has a zero mean, the propagated noise (i.e., the right
term) only contains structural knowledge in the graph, ex-
cluding from any else information. Therefore, the augmented
node representations abstract the same collaborative filtering
signals as the orignal node representaitons.

Experiments
In this section, we aim to compare our AU+and its variants
with other baselines to demonstrate its superiority in model
performance and convergence speed. We first outline the
experimental settings in this study for reproducibility, and
briefly introduce the baseline models. To demonstrate our
AU+’s superiority in performance and convergence speed,
we then compare AU+and its variants with other CL-based
methods, where LightGCN (He et al. 2020b) is utilized as the
backbone model. Later on, we additional compare AU+with
other CF methods w.r.t. from the perspective of performance.
Lastly, we perform an ablation study to show the necessity of
combining the designed components. The standard deviation
of all reported results is omitted due to their small magnitudes.

Dataset # User # Item # Iteraction Density

Douban-book 13,024 22,347 792,062 0.00272
Yelp2018 31,668 38,048 1,561,406 0.0013
Amazon-book 52,643 91,599 2,984,108 0.00062

Table 1: Statistics of the benchmark datasets.

Experimental Settings
We select three public benchmark datasets – Yelp2018 (Wang
et al. 2019), Amazon-book (Wu et al. 2021), and Douban-
book (Yu et al. 2021a) – under the public splittings to train
and evaluate our model. The statistics of each dataset are
outlined in Table 1. We split the public training set with the
ratio 8:2 for training and validation, and the model is tested
on the public test set. Each model’s performance is evaluated
by the metrics Recall@K and NDCG@K, and K = 20
for all the reported results in this paper. For the baseline
models, we first choose methods that adopt LightGCN (He
et al. 2020b) as the backbone, and perform self-supervised
CL tasks to enhance model generalizability. These models
include SGL (Wu et al. 2021), NCL (Lin et al. 2022), and
SimGCL (Yu et al. 2022). Furthermore, we compare our
framework with models that adopt either different model
structures or objectives. The models include BPRMF (Rendle
et al. 2009), Mult-VAE (Liang et al. 2018), BUIR (Lee et al.
2021), and DirectAU (Wang et al. 2022). We reproduce the
results of DirectAU under the public split, and the results of
other methods are copied from the paper for SimGCL. We
adopt SELFRec (Yu et al. 2023b) as the code structure for
model implementation. All experiments are conducted on an
NVIDIA RTX 3090 GPU with 24 GB of memory.
• BPRMF (Rendle et al. 2009) learns embeddings by ran-

domly sampling negative items coupled with positive items
to optimize the BPR loss.

• Mult-VAE (Liang et al. 2018) uses a variational auto-
encoder and aims to reconstruct the user-item click matrix.

• LightGCN (He et al. 2020b) linearly propagates and ag-
gregates the neighborhood information on the user-item
bipartite graph.

• SGL (Wu et al. 2021) promotes performance through the
auxiliary contrast task which maximizes the agreement of
each node under different graph-augmented views.

• SimGCL (Yu et al. 2022) adjusts the uniformity of the
representations by contrasting between the node views,
where different uniform noises are added to each layer of
the aggregated embeddings.

• BUIR (Lee et al. 2021) uses bootstrapping to maintain
two encoders that learn from each other and have one
approximate the higher-level features learned by the other.

• NCL (Lin et al. 2022) optimizes the structure- and
semantic-contrastive objectives to capture the layer- and
semantic-wise relations among the identified neighbors.

• DirectAU (Wang et al. 2022) replaces the BPR loss with
the combination of the alignment and uniformity loss,
which leads to higher-quality representations.



Method Yelp2018 Amazon-book Douban-book

Recall NDCG Recall NDCG Recall NDCG

1-Layer

LightGCN 0.0631 0.0515 0.0384 0.0298 0.1288 0.1081
NCL - - - - - -
SGL 0.0643(1.9%) 0.0529(2.7%) 0.0451(17.4%) 0.0353(18.5%) 0.1658(28.7%) 0.1491(37.9%)
SimGCL 0.0689(9.2%) 0.0572(11.1%) 0.0453(18.0%) 0.0358(20.1%) 0.1720(33.5%) 0.1519(40.5%)

AU+-SGL 0.0711(12.7%) 0.0594(15.3%) 0.0504(31.3%) 0.0405(35.9%) 0.1706(32.5%) 0.152(40.6%)
AU+-AU 0.0726(15.1%) 0.0608(18.1%) 0.0540(40.6%) 0.0436(46.3%) 0.1746(35.6%)) 0.1574(45.6%)
AU+ 0.0725(14.9%) 0.0610(18.4%) 0.0535(39.3%) 0.0432(45.0%) 0.1767(37.2%) 0.1586(46.7%)

2-Layer

LightGCN 0.0622 0.0504 0.0411 0.0315 0.1485 0.1272
NCL 0.0655(5.3%) 0.0545(8.1%) 0.0424(3.2%) 0.0331(5.1%) 0.1628(9.6%) 0.1426(12.1%)
SGL 0.0668(7.4%) 0.0549(8.9%) 0.0468(13.9%) 0.0371(17.8%) 0.1721(15.9%) 0.1525(19.9%)
SimGCL 0.0719(15.6%) 0.0601(19.2%) 0.0507(23.4%) 0.0405(28.6%) 0.1770(19.2%) 0.1582(24.4%)

AU+-SGL 0.0717(15.3%) 0.0601(19.2%) 0.0507(23.4%) 0.0408(29.5%) 0.1756(18.2%) 0.1576(23.9%)
AU+-AU 0.0729(17.2%) 0.0611(21.2%) 0.0531(29.2%) 0.043(36.5%) 0.1779(19.8%) 0.1602(25.9%)
AU+ 0.0730(17.4%) 0.0613(21.6%) 0.0538(30.9%) 0.0434(37.8%) 0.1804(21.5%) 0.1628(28.0%)

3-Layer

LightGCN 0.0639 0.0525 0.0410 0.0318 0.1392 0.1188
NCL 0.0666(4.2%) 0.0555(5.7%) 0.0440(7.3%) 0.0341(7.2%) 0.1625(16.7%) 0.1401(17.9%)
SGL 0.0675(5.6%) 0.0555(5.7%) 0.0478(16.6%) 0.0379(19.2) 0.1732(24.4%) 0.1551(30.6%)
SimGCL 0.0721(12.8%) 0.0601(14.5%) 0.0515(25.6%) 0.0414(30.2) 0.1772(27.2%) 0.1583(33.2%)

AU+-SGL 0.0718(12.4%) 0.0600(14.3%) 0.0502(22.4%) 0.0403(26.7%) 0.1737(24.8%) 0.1539(29.6%)
AU+-AU 0.0726(13.6%) 0.0611(16.4%) 0.0528(28.8%) 0.0427(34.3%) 0.1745(25.4%) 0.1557(31.1%)
AU+ 0.0730(14.2%) 0.0614(17%) 0.0536(30.7%) 0.0432(35.8%) 0.1776(27.6%) 0.1597(34.4%)

Table 2: Performance comparison between the CL-based methods with our model and its variants on the three datasets. The best
results are in bold and the runner-ups are underlined. Relative improvements are calculated based on LightGCN. We omit the
standard deviation of all reported results due to their small magnitudes.

Comparison with CL-based Methods
We here compare our AU+with the CL-based methods, in-
cluding SGL, SimGCL, and NCL. The overall performance
of CL-based methods with three layer settings are shown
in Table 2. We do not further increase the number of layers
since models with more than three layers suffer from the
over-smoothing problem. For a fair comparison, we repro-
duce the results of NCL on each dataset with the public splits
under either the best hyper-parameter settings reported in the
original paper or the one we find via grid search.

Performance Comparison The overall performance com-
parison with CL-based methods is shown in Table 2:

• Adding CL as the auxiliary task empirically improves the
performance of LightGCN, regardless of the augmentation
types. The superiority of SimGCL over SGL can be at-
tributed to the layer-wise perturbation mechanism, which
preserves some essential collaborative signals that might
be corrupted by graph augmentation such as edge drop.

• The performance of NCL is slightly worse than SGL, pos-
sibly because the contrasting views between the node and
its identified structure and semantic neighbors introduce
inductive bias inconsistent with the downstream task.

• In comparison, our model consistently outperforms other
CL-based methods. The fact that both our model and its
variants yield better performance suggests that the self-
supervised CL task does promote the representation gener-

alizability in alignment and uniformity, which is the main
reason for better model performance.

• Our AU+and AU+-AU, both of which rely on our 0-layer
embedding perturbation for the CL task, generally perform
better than AU+-SGL. This is because the perturbation-
based augmentation strategy minimally hurts the essen-
tial collaborative signals while providing necessary self-
supervised signals to promote the generalizability in align-
ment and uniformity.

Convergence Speed Comparison We compare our model
with other CL-based models in terms of convergence speed,
and plot each model’s learning curve with respect to recall un-
der their best performance settings shown in Figure 2. From
the figure, we see that our model achieves nearly state-of-
the-art performance after only 5 epochs of training. A slight
performance increment can be further obtained after a few
more epochs, but 50 epochs are generally sufficient for con-
vergence. In contrast, the performance of LightGCN and
NCL slowly increases as the training process proceeds, and
evidently needs more epochs for final convergence. While
SGL and SimGCL require relatively fewer epochs to con-
verge, their performance fluctuates and is not stabilized after
15 to 20 epochs of training. We credit our model’s fast con-
vergence to the self-supervised CL, which helps the model
to quickly identify the most general perspective to optimize
at the early training stages. The initial high-quality embed-
dings (evidenced by fast convergence speed with superior
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Figure 2: The learning curve w.r.t. recall@20 for the dataset of Yelp2018, Amazon-book, and Douban-book. All curves are plotted
based on the corresponding model’s best performance setting, and only the previous 50 epochs are shown.

Method Yelp2018 Amazon-book Douban-book

Recall NDCG Recall NDCG Recall NDCG

BPRMF (Rendle et al. 2009) 0.0488 0.0398 0.0298 0.0233 0.1286 0.1051
Mult-VAE (Liang et al. 2018) 0.0584 0.0450 0.0407 0.0315 0.1310 0.1103
LightGCN (He et al. 2020b) 0.0639 0.0525 0.0411 0.0315 0.1485 0.1272
BUIR (Lee et al. 2021) 0.0578 0.0461 0.0423 0.0326 0.1533 0.1317
DirectAU (Wang et al. 2022) 0.0699 0.0593 0.0435 0.03501 0.1623 0.1463

AU+-SGL 0.0718 0.0600 0.0507 0.0408 0.1746 0.1574
AU+-AU 0.0729 0.0611 0.0540 0.0436 0.1779 0.1602
AU+ 0.0730 0.0614 0.0538 0.0434 0.1804 0.1628

Table 3: Performance comparison between other methods and our model as well as its variants. The best performance is in bold
and the runner-ups are underlined. We omit the standard deviation of all reported results due to their small magnitudes

performance) makes our model a head start, laying out the
foundations of the future optimization directions for align-
ment and uniformity.

Comparison with Other Methods
We compare our model with methods that improve perfor-
mance from other perspectives such as structure modification
and objective function substitution, and the results are shown
in Table 3. The results suggest that our model consistently
outperforms other methods. We attribute the disadvantaged
performance of BPRMF and Mult-VAE to their incapability
in capturing high-order connectivity information, which is es-
sential in collaborative filtering. DirectAU outperforms other
baselines in that it directly aligns the representations with the
supervised signals while restraining the representation unifor-
mity. Representations with better alignment and uniformity
have been proven to be effective in previous works (Gao,
Yao, and Chen 2021). However, the optimization process
is affected by the label variance in the training data, and
the model can inevitably overfit the noise. In contrast, our
model and its two variants exhibit better performance com-
pared to the baselines, due to the improved generalizability
in alignment and uniformity, which is achieved by the self-
supervised CL task. Therefore, instead of rigidly optimizing
the supervised loss, our framework is able to find a more
general optimization path, leading to representations with
more generalized properties. Additionally, we note that the
performance of AU+-SGL is slightly inferior to that of AU+-

AU and our AU+. This discrepancy can be attributed to the
fact that graph augmentation operators such as edge drop
may hurt the structural knowledge, which is correspondent to
the collaborative filtering signals in the bipartite graph in the
recommendation case. Therefore, performing self-supervised
CL among impaired node representation views can lead to
inferior performance. Our proposed 0-level embedding pertur-
bation mechanism circumvents the problem by augmenting
the data while retaining the graph structure, thus leading to
better performance in AU+and AU+-AU.

Ablation Study
In this context, we perform an ablation study to demonstrate
the necessity of combining the designed components. Specif-
ically, we replace the alignment and uniformity losses from
the original representations with the BPR loss, and denote this
variant as CL-BPR. We remove the alignment and uniformity
constraints from the augmented views, and this degenerates
our model to DirectAU. Each of the ablated variants is tuned
to their best performance on each of the datasets. The per-
formance comparison is shown in Table 4. From the table,
we see that removing and replacing either of the modules
causes performance decrement: (i) While the self-supervised
CL task in CL-BPR promotes the alignment and uniformity
among the augmented views, the two properties are label-
irrelevant. The BPR loss utilized in CL-BPR does not enforce
uniformity among the original node representations. There-
fore, the representations learned in CL-BPR demonstrate in-
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Figure 3: The learning trajectories of CL-BPR, DirectAU, and our model on the three datasets w.r.t. alignment and uniformity
losses. The denoted numbers represent the final converged recall@20 and the arrows point to the converging directions.

Method Yelp2018 Amazon-book Douban-book

Recall NDCG Recall NDCG Recall NDCG

CL-BPR 0.0690 0.0573 0.0429 0.0335 0.1634 0.1430
DirectAU 0.0708 0.0592 0.00455 0.0364 0.1669 0.1497
AU+ 0.0730 0.0614 0.0538 0.0434 0.1804 0.1628

Table 4: Performance comparison between our model and its ablated variants: CL-BPR replaces the supervised loss as the BPR
loss; DirectAU does not conduct the self-supervised CL task.

sufficient uniformity, making the model yield relatively less
ideal performance. (ii) The alignment and uniformity proper-
ties demonstrated in the representations learned in DirectAU
are extracted from labeled data. This label dependency im-
pairs the representation generalizability, and further leads to
inferior model performance on the testing data.

Furthermore, we depict the learning trajectories of these
variants concerning the alignment and uniformity losses in
Figure 3. From the figure, we see that during the training
process: (i) CL-BPR always favor uniformity over alignment
– it continuously sacrifices alignment for improved uniformity.
(ii) DirectAU always rigidly minimizes the joint of the two
losses. (iii) In contrast, our AU+is able to dynamically adjust
the optimization object – it neither overly fits the noise in
the labeled data by heading towards the directions where the
joint loss decreases, nor constantly favors one property over
the other. Our AU+looks for a point where the alignment and
uniformity are more generalized, by dynamically adjust the
optimization object and directions.

Related Work
GNN-based Recommender Systems
Recently, the advances of graph neural networks (Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Veličković et al. 2018) offer new opportunities for recom-
mender systems to capture high-order structure informa-
tion in the observed interactions (Gao et al. 2022), making
GNN-based recommender systems the new state-of-the-art
approaches. For example, GCMC (Berg, Kipf, and Welling
2018) transforms the interaction matrix completion problem
into a link prediction problem on the bipartite interaction
graph. NGCF (Wang et al. 2019) encodes the collaborative

signals into the embedding process for explicitly modeling
high-order connectivity. LightGCN (He et al. 2020b) simpli-
fies the design of GCN by removing the linear aggregation
weights and the non-linear activation functions in each layer,
making the model more concise and appropriate for the rec-
ommendation task. In addition, domain knowledge has been
utilized as side information to enhance the quality of rec-
ommendation (Chen et al. 2019; Wu et al. 2019b,a; Huang
et al. 2021). Despite the differences in details, the above
methods follow the general idea, which is to gather and prop-
agate neighborhood information for high-order connectivity
abstraction. Our work also follows this paradigm – it not
only allows the model to capture the structural knowledge
in graph, but also fits to our devised augmentation strategy,
which minimally yet sufficiently generate augmented node
views for self-supervised learning.

Contrastive Learning for Recommendation

Self-supervised contrastive learning was first brought up in
the domain of computer vision (Ye et al. 2019; He et al.
2020a; Chen et al. 2020b; Caron et al. 2020), and was quickly
adapted to multiple application areas including natural lan-
guage processing (Gao, Yao, and Chen 2021; Giorgi et al.
2021), graph mining (Liu et al. 2022), as well as recommen-
dation (Wu et al. 2021; Yu et al. 2022; Lee et al. 2021; Lin
et al. 2022; Chen et al. 2022), due to its alleviation of the
data sparsity issue. Many works have adopted this technique
in the realm of the personalized recommendation (Chen et al.
2022; Wu et al. 2021; Lee et al. 2021; Yu et al. 2022; Lin et al.
2022). For example, ICL (Chen et al. 2022) leverages the EM
algorithm to learn latent intent variables and maximizes the
agreement of a view with its intent variable. SGL (Wu et al.



2021) relies on graph augmentation such as node drop, edge
drop, and random walk to create contrastive views. They
also theoretically analyze that self-supervised contrastive
learning with InfoNCE loss mines hard negative samples by
properly tuning the temperature hyperparameter. BUIR (Lee
et al. 2021) relieves the burden of negative sampling to create
contrastive views by maintaining two distinct encoders that
learn from each other. SimGCL (Yu et al. 2022) creates con-
trastive views by adding uniform distributed noises to every
layer of LightGCN. They also find that this auxiliary task im-
proves the user/item embedding uniformity, which not only
mitigates the popularity bias but also improves the training
performance and efficiency. NCL (Lin et al. 2022) leverages
the EM algorithm to learn the neighbors of a node in the
structure space, and its semantic prototype in the semantic
space. Positive contrastive views are created between the
node and its structure neighbors and semantic prototype. The
general paradigm of the contrastive learning that the above
models follow is to first identify the label-invariant views that
filter irrelevant noises with respect to the downstream task,
and then improve model robustness by pulling positive views
together and pushing negative views away. Apart from the
fact that our model also follows this paradigm, we further
focus on the coherent effects between the main and auxiliary
tasks from the perspective of representation properties, i.e.,
alignment and uniformity. In addition, our devised augmenta-
tion strategy is free from the requirement of traditional graph
augmentation as most of the previous works.

Conclusion

In this paper, we revisit the representations learned in the cur-
rent CF-based method, and identify their label dependency
from the perspective of alignment and uniformity. The identi-
fied label dependency can inevitably results in the model’s
overfitting to the noise in labeled data, and further compro-
mises the model’s generalizability to unseen testing data. To
mitigate such label dependency, we propose AU+, a frame-
work that utilizes self-supervised CL to improve the general-
izability in representation alignment and uniformity. Within
this framework, we devise the 0-layer perturbation mecha-
nism, that minimally yet sufficiently augments the data for
self-supervised CL, circumventing the requirement of clas-
sical graph augmentation operators. We conduct extensive
experiments over three benchmark datasets to demonstrate
the superiority of our AU+. Results show that the integration
of self-supervised CL enhances the generalizability of the
learned representations from the perspective of alignment
and uniformity, leading to improved performance and faster
convergence speed. Finally, we provide further discussions
regarding our work’s limitations and impacts in Appendix.
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A Hyper-parameter Setting
For all the baselines, we either refer to the best hyper-
parameter settings in the original papers or tune the parame-
ters through grid search. Overall, we add a L2 regularization
to each of the models and set the regularization coefficient

Table 5: Additional hyper-parameter settings for the repro-
duced baselines and our model.

Model Hyper-parameter Yelp2018 Amazon-book Douban-book

SGL

r 0.1 0.1 0.2
τ 0.2 0.2 0.2
λ1 0.1 0.5 0.1
L 3 3 3

SimGCL
ϵ 0.1 0.1 0.2
λ1 0.5 2 0.2
L 3 3 3

NCL

τ 0.05 0.05 0.05
λ1 1e-6 1e-6 1e-6
α 1.5 0.8 1.5

λproto 1e-7 1e-7 1e-7
nc 2000 2000 2000
L 3 3 3
λ2 1e-4 1e-6 1e-4

DirectAU γ 2 1.5 0.5
L 3 3 3

AU+

λ1 0.5 2 0.2
ϵ 0.2 0.2 0.05
τ 0.2 0.2 0.2
γ 1 1 0.3
L 3 2 2

AU+-SGL

λ1 1 1 0.2
ϵ 0.2 0.2 0.2
τ 0.2 0.2 0.2
γ 2 2 0.5
r 0.2 0.2 0.2
L 3 2 2

AU+-AU

λ1 1 2 0.5
ϵ 0.2 0.2 0.1
τ 0.2 0.2 0.2
γ 2 2 0.5
γp 1 2 1
L 3 2 2



λ2 as 1e−4. The batch size is set to 2048 and we use Adam
optimizer with a learning rate 1e−3. For DirectAU, AU+and
its variants, we tune γ from {0.2, 0.5, 1.0, 2.0, 3.0}, and λ1

from {0.2, 0.5, 1.0, 2.0}. We also tune ϵ from {0.01, 0.05,
0.1, 0.2, 0.5} for our model. Following the original setting for
SGL and SimGCL, we set the temperature τ as 0.2 and keep
it the same for AU+and its variants for a fair comparison.
Table 5 shows the detailed hyper-parameter settings.

B Hyper-parameter Sensitivity
In this context, we analyze our model’s performance sensi-
tivity with respect to the supervised uniformity coefficient γ
and the unsupervised contrastive loss coefficient λ1.

B.1 Supervised Uniformity Coefficient γ.
We test the performance sensitivity of our model with respect
to the hyperparameter γ, and show the results in Table 4.
We note that γ for Yelp2018 and Amazon-book ranges from
{0.1, 0.2, 0.5, 1, 2}, and for Douban-book it ranges from
{0.2, 0.3, 0.5, 1, 2}. From the figure, we see that our model
is more sensitive on the dataset Douban-book with respect
to the hyperparameter γ, and is less sensitive on the other
two datasets. We attribute the difference to the sizes of the
datasets - the larger the dataset is, the less sensitive it is to γ.
In addition, we observe that although the performance differs
as γ changes, within a certain range our model is still able to
achieve decent performance. For example, on Amazon-book,
γ = 1/γ = 2 yields similar state-of-the-art performance.
We credit this to the InfoNCE loss for the self-supervised
contrastive task, which implicitly promotes representation
uniformity. Furthermore, we notice that the larger the dataset
is, the larger γ it is for the model in terms of the final per-
formance. This might be because the representations of a
smaller dataset is a smaller community, and therefore more
sensitive to uniformity loss.
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Figure 4: Our model’s sensitivity with respect to γ.

Contrastive Loss Coefficient λ1. We test our model’s per-
formance sensitivity concerning the hyperparameter λ1 and
show the results in Figure 5. Note that the test range for each
dataset differs, and we select the ranges among which the
best possible performance might lie based on the estimation
via the first few epochs’ results. From the figure, we see that
our model shows up different levels of sensitivity to different
datasets. For Yelp2018, the performance does not fluctuate vi-
olently with λ1 ranging from 0.1 to 1. In contrast, our model
displays relatively higher sensitivity towards Amazon-book
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Figure 5: Our model’s sensitivity with respect to λ2.

and Douban-book in terms of λ1. We observe that a value
around 0.2 generally yields good performance for all the
datasets. For models with λ1 that is too small, they cannot
exploit the benefits of the unsupervised RAU loss, therefore
gradually degenerate to DirectAU, which yields worse perfor-
mance than ours according to Table 3. Models with λ1 that
are too large bring about performance decrement, in that they
pay too much effort in aligning the noises while ignoring the
essential supervised signals.

C Limitations
While we introduce a hypothesis, which states that the sam-
pling variance in labeled training data can compromise the
generalizability of learned representations, the hypothesis is
only verified empirically. Further analysis can include how
the sample variance affects the representations, demonstrated
statistically or visually. Additionally, we do not trial how
the noise distribution affects the functionality of the devised
0-layer perturbation mechanism. According to SimCSE (Gao,
Yao, and Chen 2021), performing dropout along the hidden
dimension of the representations is an alternative in augment-
ing the data. Future research may investigate other efficient
and effective data augmentation strategy in CF-based meth-
ods, which should not be limited to graph-based ones.

D Broader Impacts
Our research on representation alignment and uniformity
draws the model training attention towards the representa-
tion side, where the alignment and uniformity property are
widely recognized crucial ones determining the representa-
tion qualities. However, representations possess more than
one properties, and should not be defined by the two only.
Each property is related to each downstream task differently,
and the relationship varies by dataset as well. We hope this
work raise more research attention towards the properties of
representations, as well as their relations towards downstream
tasks, so as to universally improve models’ generalizability.


