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ABSTRACT
Opioids (e.g., oxycodone and morphine) are highly addictive pre-
scription (aka Rx) drugs which can be easily overprescribed and lead
to opioid overdose. Recently, the opioid epidemic is increasingly
serious across the US as its related deaths have risen at alarming
rates. To combat the deadly opioid epidemic, a state-run prescrip-
tion drug monitoring program (PDMP) has been established to
alleviate the drug over-prescribing problem in the US. Although
PDMP provides a detailed prescription history related to opioids,
it is still not enough to prevent opioid overdose because it cannot
predict over-prescribing risk. In addition, existingmachine learning-
based methods mainly focus on drug doses while ignoring other
prescribing patterns behind patients’ historical records, thus result-
ing in suboptimal performance. To this end, we propose a novel
model DDHGNN - Disentangled Dynamic Heterogeneous Graph
Neural Network, for over-prescribing prediction. Specifically, we
abstract the PDMP data into a dynamic heterogeneous graph which
comprehensively depicts the prescribing and dispensing (P&D) rela-
tionships. Then, we design a dynamic heterogeneous graph neural
network to learn patients’ representations. Furthermore, we devise
an adversarial disentangler to learn a disentangled representation
which is particularly related to the prescribing patterns. Exten-
sive experiments on a 1-year anonymous PDMP data demonstrate
that DDHGNN outperforms state-of-the-art methods, revealing its
promising future in preventing opioid overdose.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Theory
of computation→ Dynamic graph algorithms; • Computing
methodologies→ Neural networks.
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1 INTRODUCTION
Opioids are commonly used for pain relief among prescription
(aka Rx) drugs, while the intense pleasure they bring to patients
can easily lead to addiction and even overdose. Although the le-
gal dispensation of opioids requires medical prescription from li-
censed physicians, the opioid-related deaths in the US have still
gone through an alarming increase. According to the report from
CDC, the number rose from 21,088 in 2010 to 46,802 in 2018 [16].
Early prediction and intervention of over-prescribing behaviors
could be a key to alleviate such a problem. However, relying on the
evaluation of professional healthcare workers is not sufficient in
many cases. Fortunately, increasingly advanced machine learning
techniques enable us to detect/predict potential over-prescribing
patients on large-scale datasets. Traditional machine learning meth-
ods, like regression, gradient boost and random forest model, have
been employed to estimate opioid overdose risk [15, 19]. More re-
cently, some deep learning methods have also been proposed for
opioid overdose prediction. Depending on the data they use, they
model dynamic dependency [2, 9], spatial dependency [8, 39], or
combine the two dependencies together [5, 38] to solve the prob-
lem. Despite the progress that has been made, few of the previous
methods have explored the prescribing patterns of over-prescribing
patients, which could help us predict potential overdose patients
early, since these patterns are time-evolving.

In the United States, a state-run prescription drug monitoring
program (PDMP) [4] is established to collect and distribute data
about the prescription and dispensation of federally controlled sub-
stances and other potentially addictive prescription drugs from
pharmacies in the form of electronic databases. However, the uti-
lization of PDMP among professional healthcare workers is still
limited and one of the major reasons is that the PDMP dataset is
unable to find potential over-prescribing patients [13]. Thus, an
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effective model which can find patients at risk based on their his-
torical prescription records is needed. To achieve this goal, some
challenges need to be addressed: (1) Due to the feature distribution
difference among the Rx entries in PDMP data (e.g., patients and
drugs) and the relations between them (e.g., patient-drug relation
and patient-physician relation), capturing the prescribing and dis-
pensing (P&D) relationships among different Rx entries is the first
challenge; (2) The relations among different Rx entries are naturally
dynamic and the intervals between them varies. Therefore, model-
ing the spatial and dynamic dependencies is the second challenge;
(3) Rx drugs can be prescribed and dispensed by different physicians
and pharmacies, and prescribed with various doses with repeated
refills. These factors could have different impacts on patients. Thus,
extracting the informative factors behind the PDMP data is the
third challenge.

To address the above challenges, we propose a novelDisentangled
Dynamic Heterogeneous Graph Neural Network (DDHGNN) to
predict potential patients with high over-prescribing risks. Specifi-
cally, we first construct a dynamic heterogeneous graph to abstract
the PDMP data and properly describes the P&D relations among dif-
ferent Rx entries. To handle the spatial and dynamic dependencies
simultaneously while preserving the heterogeneity, we propose
a dynamic heterogeneous graph attention network (DHGAT) en-
hanced with a functional time encoding strategy. Although the
entry representations learned by DHGAT can be directly applied
to predict potential over-prescribing patients, multiple factors are
highly entangled in the representations, which makes the task more
challenging. Thus, with patient embedding obtained from DHGAT,
we further design a novel disentangler based on generative ad-
versarial network to extract the factors specific to the prescribing
patterns. In particular, we introduce external prior knowledge gen-
erated from different relation views and a prior-exchange mecha-
nism to make the disentangled representation more reliable. Finally,
the disentangled patient embeddings are used for predicting the
potential high-risk over-prescribing patients. To summarize, our
contributions in this work are:
• To combat the increasingly serious opioid overdose problem, we
propose to predict patients with high overdose risk based on the
PDMP data. We abstract the P&D reltions in PDMP data into a
dynamic heterogeneous graph to not only properly describe rela-
tionships between different Rx entries but also integrate spatial
and dynamic dependencies simultaneously.
• A novel model called DDHGNN with two collaborative compo-
nents (i.e., DHGAT and prior-enhanced adversarial disentangler)
is proposed to encode spatial and dynamic properties on a dy-
namic heterogeneous graph and further separate informative
factors from the learned embeddings.
• Extensive experiments are conducted on a 1-year PDMP dataset.
The proposed DDHGNN achieves state-of-the-art performance
by comparison with many baseline methods, demonstrating its
effectiveness and promising future in preventing opioid epidemic.

2 RELATED WORK
2.1 Heterogeneous Graph Learning
Due to the heterogeneous relations in PDMP data, our work is
related to heterogeneous graph embedding (HGE) . Generally, there

are three kinds of HGE methods [35]: (1) The proximity-preserving
HGE methods [3, 37] which are mostly based on random walk [25]
and optimized by skip-gram [12]; (2) The message-passing HGE
methods that consider both of structural and node attribute infor-
mation. These methods usually learn graph embedding by aggre-
gating and transforming the embeddings of the original neighbors
[18, 36, 40] or meta-path neighbors [10, 30, 41]; (3) The relation-
learning HGE methods [1, 31, 34] which transform the hetero-
geneous networks into schema-rich knowledge graph and opti-
mize the embeddings by measuring the acceptability of the unseen
triplets. On the other line, embedding learning on dynamic graphs
has also drawn increasing attention. These methods can be roughly
divided into two categories: (1) Discrete-time methods [7, 24, 27]
which discretize a dynamic graph into a sequence snapshots and
encode them with static methods to produce a series of embed-
dings, then fit the embeddings into time series models. Therefore,
the temporal information is lost within the same snapshot, which is
unsuitable for real-world data with continuous temporal informa-
tion; (2) Continuous-time methods [21, 23, 26, 32], which directly
operate on dynamic graph without time discretization. To handle
the dynamics, different temporal encoding techniques are raised.
However, the aforementioned methods mainly target homogeneous
graphs and their performance might be limited to heterogeneous
graphs. Although a number of models for dynamic heterogeneous
graphs have also been proposed [6, 33], their performance still ei-
ther suffer from the time discretization strategy or node attribute
information loss. In this work, we propose to build a dynamic het-
erogeneous graph model which handles the dynamics continuously
and preserves heterogeneity.

2.2 Over-prescribing Prediction
In this work, we aim to make early predictions of patients within
the PDMP system who have high risks in overdose. There have
been some studies for opioid overdose prediction or detection. We
roughly assort previous methods into three categories according to
different data characteristics that they tend to model: (1) Temporal
methods [9, 15, 19] model time series data, like medication or di-
agnosed results, to predict individual or regional opioid overdose
risk as time goes; (2) Spatial methods [8, 39] detect opioid users
from relational data, such as social network. With the detection
results, extra caution on these opioid users will prevent worse sit-
uations happening; (3) Spatio-temporal methods [5, 38] combine
both dynamic and spatial dependencies together to capture more
complex relations, generally leading to better performances. De-
spite the great successes of existing studies on over-prescribing
prediction, most of them are not able to make timely predictions to
effectively prevent opioid-overdose because the opioid addiction is
not directly associated with the variables they use for prediction. In
light of this, we further exploit PDMP data and utilize the dynamic
heterogeneous relations among different Rx entries to capture the
prescribing patterns which directly reflect opioid addiction.

3 PRELIMINARIES
In this section, we will first introduce some concepts used through-
out this paper, then formally define the problem.
Definition 3.1. Heterogeneous Graph. A heterogeneous graph
G = (V, E,XV ,XE ) consist of a node setV , an edge set E along
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with the node type mapping function 𝜙 : V → A, and the edge
type mapping function 𝜓 : E → R, where A and R denotes the
node and edge types, with the constrain |A| + |R| > 2. In addition,
each node 𝑣 ∈ V (and edge (𝑢, 𝑣) ∈ E) could be associated with a
attribute vector x𝑣 ∈ XV (and x(𝑢,𝑣) ∈ XE ).
Definition 3.2. dynamic heterogeneous Graph. In this work, a dy-
namic heterogeneous graph is constructed by a sequence of chrono-
logically ordered events G𝑇 = {ℯ (𝑡1) ,ℯ (𝑡2) , . . .} and multiple
events could occur at the same time (0 ≤ 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑇 ). Each
event ℯ(𝑡) can be represented by a quadruplet (𝑢, 𝑣, 𝑟, 𝑡), which
indicates an interaction between node 𝑢 and node 𝑣 with rela-
tion 𝑟 at time 𝑡 . V𝑇 = {𝑣 : ∀𝑣 ∈ 𝑛(𝑡), 𝑡 ∈ [0,𝑇 ]} is the node set,
E𝑇 = {(𝑢, 𝑣) : ∀(𝑢, 𝑣) ∈ 𝑛(𝑡), 𝑡 ∈ [0,𝑇 ]} represents the edge set,
R𝑇 = {𝑟 : ∀𝑟 ∈ 𝑛(𝑡), 𝑡 ∈ [0,𝑇 ]} denotes the relation type set, re-
spectively. Any node has never been seen before will be added to
the graph first and it would be a multi-graph if there are more than
one event between a pair of nodes.

The prescriptions in a temporal order connected by the hetero-
geneous relations among different Rx entries (i.e., patient, drug,
physician and pharmacy) makes the constructed dynamic P&D
graph naturally dynamic and heterogeneous. Take the prescription
in Figure 1(a) as an example, a 35-year-old male patient visits a psy-
chiatrist physician who prescribes him 21 tablets of a Rx drug (e.g.,
Tramadol) with 200mg/tablet for a 7-day supply. The patient fills
the prescription on 15/03/2016 at a pharmacy which is permitted to
dispense such Rx drugs. The corresponding graph schema is shown
in Figure 1(b), where five types of P&D relationships are used to
describe the interactions among four types of Rx entries. Each refill
behavior is a time-stamped event and the corresponding nodes and
edges associated with each record are added to the graph accord-
ingly. For a patient and his/her prescription records, the process to
construct a dynamic P&D graph 𝐺𝑡 is shown in Figure 1(c). A pair
of nodes might interact with each other more than once.
Definition 3.3. Opioid Over-prescribing Prediction. Given a
constructed dynamic P&D graph G𝑇 = (V𝑇 , E𝑇 ,XV𝑇 ,XE𝑇 ) up to
time 𝑇 , the task is to develop a machine learning model to learn
representation h𝑣 of each patient 𝑣 , which is further utilized to
predict opioid overdose risk of 𝑣 after timestamp 𝑇 .

4 MODEL
In this section, we present details of the proposed model DDHGNN,
which is shown in Figure 2. It is composed of two key components: 1)
Dynamic Heterogeneous graph attention network (DHGAT), which
includes intra-relation temporal aggregation and inter-relation ag-
gregation mechanisms, to learn relation-specific embeddings and
comprehensively fuse them together, respectively; and 2) Prior-
enhanced adversarial disentangler, which encodes and decodes the
patient embeddings obtained from the previous step to generate
more informative disentangled embeddings. The pseudo-code of
DDHGNN is shown in Appendix A, we elaborate these two compo-
nents in the following of this section.

4.1 Patient Embedding with Dynamic
Heterogeneous Graph Attention Network

To generate patient embeddings, we develop a dynamic heteroge-
neous graph attention network which includes two consecutive
steps: first use an intra-relation temporal aggregation mechanism to

(a) Prescriptions (b) P&D Graph Schema

(c) Dynamic P&D Graph

pickup

prescribe

take

visit

dispense

t1

t1t1
,t3

t1

t1

t1t1,t2

t1

t3t2

t2

t2

t1,t2

t2t3

t1 t2 t3

Figure 1: (a) An example of a prescription; (b) P&D graph
schema; (c) Example of dynamic P&D graph construction
based on a patient’s prescription records.

summarize temporal messages from neighbors connected by each
relation, and then apply an inter-relation aggregation mechanism
to combine previous relation-specific embeddings.
4.1.1 Intra-relation Temporal Aggregation. We first introduce an
intra-relation temporal aggregation mechanism, which fuses neigh-
bor information within the same relation type. In a heterogeneous
graph, each node and edge type may have its own attribute space.
Taking the PDMP dataset as an example, the initial patient attributes
are associated with their demographic information (e.g., age and
sex), while the initial drug attributes reflect its chemical compo-
nents and side effects. To address the attributes’ heterogeneity, we
employ a type-specific projection on each node and edge to map
their distinct raw attribute vectors into the same feature space.
Specifically, given the attribute vector x𝑣 ∈ R𝑑𝜙 (𝑣) of node 𝑣 and
x(𝑢,𝑣) ∈ R𝑑𝜓 (𝑢,𝑣) of edge (𝑢, 𝑣), their projections are formulated as:

h0𝑣 = 𝜎
(
W𝜙 (𝑣) · x𝑣

)
,

h0(𝑢,𝑣) = 𝜎
(
W𝜓 (𝑢,𝑣) · x(𝑢,𝑣)

)
,

(1)

where h0𝑣, h0(𝑢,𝑣) ∈ R
𝑑 ; W𝜙 (𝑣) ∈ R𝑑×𝑑𝜙 (𝑣) and W𝜓 (𝑢,𝑣) ∈ R𝑑×𝑑𝜓 (𝑢,𝑣)

are the trainable type-specific projection parameters for node type
𝜙 (𝑣) and edge type𝜓 (𝑢, 𝑣), respectively; 𝜎 (·) is 𝑅𝑒𝐿𝑈 function. For
each node, neighbors connected by the same relation can contribute
differently to its embedding (e.g., drug-patient impact varies with
drug type, dose, and refill time). In light of this, we introduce a
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Figure 2: (a) The overall framework of DDHGNN. Raw features are first projected to the embedding space and are later used for
intra- and inter-relations aggregations. Embeddings are then refined by disentangling from prior knowledge and are passed
into an MLP for further prediction; (b) For each relation, combine edge and time projections to compute relation attention
coefficients, which are later used to aggregate temporal relation-specific messages; (c) Aggregate relation-specific messages with
the attention mechanism; (d) Prior-enhanced adversarial disentangler balances the dosage and behavior patterns by training
the GAN with cross-labeled paired samples.

time-aware self-attention mechanism to learn the weight for each
neighbor of the same type. Particularly, given a target node 𝑣 and its
relation-𝑟 -based neighbors N𝑟

𝑇
(𝑣) at timestamp 𝑇 , attention score

of node 𝑢 ∈ N𝑟
𝑇
(𝑣) is calculated through three steps. For each

edge, we first concatenate its source node embedding, target node
embedding, edge embedding, and time encoding together as the
message vector. Then, we multiply the message vector of each edge
with an attention vector to generate its attention score. Finally, we
normalize the attention score across all relation-r-based neighbors
through 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 operation. Without loss of generality, we extend
it to multi-head mechanism which is formulated as:

m𝑙
(𝑢,𝑣),𝑇 =

[
h𝑙−1𝑢,𝑇 ∥h

𝑙−1
𝑣,𝑇 ∥h

0
(𝑢,𝑣),𝑇 ∥Φ(𝑇 − 𝑡 (𝑢,𝑣) )

]
,

𝜶 𝑙,𝑟(𝑢,𝑣),𝑇 =
𝐾

∥
𝑘=1

𝜎

(
Softmax
∀𝑢∈N𝑟

𝑇
(𝑣)

( [
a𝑙,𝑟
𝑇

]
𝑘
·
[
m𝑙
(𝑢,𝑣),𝑇

]
𝑘

))
,

(2)

where ∥ denotes the concatenation operation, 𝐾 is the number of
heads, Φ(·) ∈ R𝑑 is a generic time encoding function [32], 𝑡 (𝑢,𝑣) is
the timestamp that edge (𝑢, 𝑣) appears, 𝜎 (·) is 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 function,
a𝑙,𝑟
𝑇
∈ R4𝑑 are the trainable attention vectors. Given the computed

attention scores of node 𝑣 ’s neighbors and their embeddings in
(𝑙−1) layer, we performweighted aggregation to get the embedding
of node 𝑣 specific to relation 𝑟 :

h𝑙,𝑟
𝑣,𝑇

= 𝜎
©«

∑︁
𝑢∈N𝑟

𝑇
(𝑣)

𝜶 𝑙,𝑟(𝑢,𝑣),𝑇 ·
[
W𝑙,𝑟
𝑀,𝑇
· h𝑙−1𝑢,𝑇

]ª®¬ , (3)

where W𝑙,𝑟
𝑀,𝑇
∈ R𝑑×𝑑 is message transformation matrix. Figure 2(c)

shows the illustration of intra-relation temporal aggregation.

4.1.2 Inter-relation Aggregation. Through intra-relation aggrega-
tion, we gather a set of relation-specific embeddings for node 𝑣 ,
denoted as

{
h𝑙,𝑟1
𝑣,𝑇
, h𝑙,𝑟2
𝑣,𝑇
, . . . , h𝑙,𝑟𝑚

𝑣,𝑇

}
(𝑚 is the number of relations as-

sociated with node 𝑣). Then, we fuse the multiple relation-specific
node embeddings to learn comprehensive node embeddings. Instead
of taking the element-wise average of these relation-specific embed-
dings, we propose to use the inter-relation aggregation mechanism
(Figure 2(b)) to automatically learn the relation-specific importance.
For a specific relation 𝑟 , we apply a non-linear transformation to it
and summarize it by averaging:
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s𝑙,𝑟
𝑇

=
1��V𝑟
𝑇

�� ∑︁
𝑣′∈V𝑟

𝑇

[
tanh

(
W𝑙,𝑅
𝑇
· h𝑙,𝑟
𝑣′,𝑇 + b𝑙,𝑅

𝑇

)]
, (4)

where V𝑟
𝑇
is the set nodes connected by relation 𝑟 at timestamp

𝑇 ; W𝑙,𝑅
𝑇
∈ R𝑑×𝑑 and b𝑙,𝑅

𝑇
∈ R𝑑 are the trainable transformation

weight and bias, respectively. We then multiply the summarized em-
beddings with a relation attention vector to compute the relations-
specific attention scores, followed by a 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 operation:

𝛽
𝑙,𝑟
𝑣,𝑇

= Softmax
∀𝑟 ∈R(𝑣)

(
c𝑙,𝑅
𝑇
· s𝑙,𝑟
𝑇

)
, (5)

where c𝑙,𝑅
𝑇
∈ R𝑑 is the trainable relation attention vector. Finally,

we aggregate the relation-specific embeddings with the normalized
relation-specific attention score:

h̃𝑙𝑣,𝑇 =
∑︁

𝑟 ∈𝑅 (𝑣)
𝛽
𝑙,𝑟
𝑣,𝑇
· h𝑙,𝑟
𝑣,𝑇
. (6)

Meanwhile, a gate mechanism is utilized to control how much
information the aggregation result should contribute. Given the
aggregation result of node 𝑣 in layer 𝑙 and the output of layer 𝑙 − 1,
we combine them as:

h𝑙𝑣,𝑇 = 𝑁𝑜𝑟𝑚

(
𝛿𝜙 (𝑣) · h̃𝑙𝑣,𝑇 +

(
1 − 𝛿𝜙 (𝑣)

)
· h𝑙−1𝑣,𝑇

)
, (7)

where 𝑁𝑜𝑟𝑚(·) denotes the layer-norm function, 𝛿𝜙 (𝑣) ∈ R is
the trainable residual weight. A single DHGAT layer includes a
intra-relation aggregation module and a inter-relation module. By
stacking 𝐿 DHGAT layers, we derive the patient embedding h𝐿

𝑣,𝑇
,

equally denoted as h𝑣 to be the input of the later prior-enhanced
adversarial disentangler To this end, we denote Θ as the set of
parameters in the two modules.

4.2 Prior-Enhanced Adversarial Disentangler
Although DHGAT proposed in the previous subsection is effec-
tive in integrating both dynamic and spatial dependencies over
the dynamic P&D graph, some factors residing in the generated
embeddings might be redundant for our overprescribing prediction
task. These factors are unable to depict the dynamic trend behind
patients’ prescription records (e.g., patients with a large number
of prescriptions can still be considered as low risk if they refill
their prescriptions regularly at a safe level). This issue further calls
for more informative factors in describing patients’ prescribing
patterns. In particular, we consider three kinds of anomalous be-
haviors: (1) patients visit multiple physicians for the same kind of
Rx drugs; (2) patients pick up the same kind of Rx drugs at differ-
ent pharmacies, especially the not-so-close ones; (3) patients use
multiple kinds of Rx drugs simultaneously, which could indirectly
lead to overdose even when the dose level of each single Rx drug is
not dangerous. With these patterns slowly evolving with time, the
informative factors and other static information could be highly
entangled with each other, resulting in suboptimal performance. To
alleviate the issue, we would like to learn disentangled patient em-
beddings which only consist of factors specific to their prescribing
patterns. Between the two patterns, the behavior pattern is harder
to extract compared with the dosage pattern since the anomalous
behaviors are not quantified in the raw data. Therefore, we pro-
pose to generate anomalous behavior-independent priors from
three relation-based perspectives (i.e., patient-physician, patient-
pharmacy and patient-drug) denoted as o𝑖 ∈ R1×3 to make learning

behavior pattern factors more reliable [22]. Computation examples
of the priors are illustrated in Appendix C.

To incorporate the generated prior knowledge in deriving the dis-
entangled patient embeddings, we propose a novel prior-enhanced
adversarial disentangler (Figure 2(d)), which consists of a genera-
tor 𝐺 and a discriminator 𝐷 . The discriminator 𝐷 =

[
𝐷𝑇 , 𝐷𝐿, 𝐷𝐶

]
is a multi-task neural network consisting of three parts: (1) 𝐷𝑇
competes with 𝐺 and distinguishes a real patient embedding from
a synthetic one; (2) 𝐷𝐿 performs the over-prescribing prediction;
(3) and 𝐷𝐶 aims to recover the priors from the input embeddings.
The generator 𝐺 combats with 𝐷 by generating synthetic embed-
dings ĥ𝑖 through an encoder-decoder framework. Specifically, the
generator 𝐺 = [𝐺𝑒 ,𝐺𝑑 ], where the encoder 𝐺𝑒 learns to map the
original patient embeddings h𝑖 to a disentangled representation
𝐺𝑒 (h𝑖 ), while the decoder 𝐺𝑑 incorporates 𝐺𝑒 (h𝑖 ) with node 𝑖’s
prior knowledge o𝑖 and Gaussian noise z ∼ N(0, 1) to generate the
synthetic embedding ĥ𝑖 . This process is formulated as:

ĥ𝑖 = 𝐺𝑑 (𝐺𝑒 (h𝑖 ), o𝑖 , z) . (8)

Meanwhile, to balance the learning between dosage pattern and
behavior pattern, we exchange the behavior-independent prior of
each patient and then follow the same process to generate another
synthetic embedding (the left part of Figure 2(d)). Additionally, we
feed the patient embedding to the disentangler with a cross-labeled
pair (one labeled as high-risk of overdosing in the future and the
one as low-risk) and exchange the priors within this pair. By doing
so, we enforce the disentangler to make a correct prediction even
without his/her behavior pattern information, thus learn better
dosage pattern factors. With the adversarial disentangler designed
in a "drop and recover" manner, we expect 𝐺𝑒 to learn a mapping
from the original embedding to the disentangled representation
where prior knowledge is excluded. Formally, the objective function
of 𝐷 is formulated as:

max
𝐷

𝑉𝐷 (𝐷,𝐺) = E𝑝d (h)
[
log𝐷𝑇 (h) − 𝐷𝐿 (h) − 𝐷𝐶 (h)

]
+

E𝑝m (h)
[
log

(
1 − 𝐷𝑇 (ĥ)

)
− 𝐷𝐿 (ĥ) − 𝐷𝐶 (ĥ)

]
+

E𝑝e (h)
[
log

(
1 − 𝐷𝑇

(
ĥ′

))
− 𝐷𝐿

(
ĥ′

)
− 𝐷𝐶

(
ĥ′

)]
,

(9)

where we use cross-entropy loss for 𝐷𝑇 and 𝐷𝐿 , and mean square
error for𝐷𝐶 . These three parts (i.e.,E𝑝d ,E𝑝m andE𝑝e ) correspond to
the aforementioned three tasks on the real inputs, synthetic inputs
recovered with their own priors and exchanged priors, respectively.
It is noteworthy that𝐷𝐶 will recover the prior knowledge of another
patient in the paired samples in the third part of Eq. (9). Similarly,
we formulate the objective function of 𝐺 as:

max
𝐺

𝑉𝐺 (𝐷,𝐺) =E𝑝d (h)
[
log𝐷𝑇 (ĥ) − 𝐷𝐿 (ĥ) − 𝐷𝐶 (ĥ)

]
+

E𝑝d (h)
[
log𝐷𝑇 (ĥ′) − 𝐷𝐿 (ĥ′) − 𝐷𝐶 (ĥ′)

]
.

(10)

4.3 Objective Function
With the proposed two components, we learn a disentangled em-
bedding 𝐺𝑒 (h𝑣) for each patient 𝑣 , which is further utilized for
opioid over-prescribing prediction. Specifically, we first feed the
disentangled embedding into a multi-layer perceptron (MLP) to
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predict this patient’s over-prescribing label:

𝒚𝑣 = MLP (𝐺𝑒 (h𝑣)) , (11)

where 𝒚𝑣 stands for the predicted overdose probability. Then, we
average cross-entropy losses over all labeled patientsV𝑝𝑎𝑡𝑖𝑒𝑛𝑡 as
the final objective:

𝐿𝑝 = −
∑︁

𝑣∈V𝑝𝑎𝑡𝑖𝑒𝑛𝑡

𝒚𝑇𝑣 log𝒚𝑣, (12)

where𝒚𝑣 is the ground truth label of patient 𝑣 . Then, we combine 𝐿𝑝
with the objective of the disentangler (i.e.,𝑉𝐺 (𝐷,𝐺) and𝑉𝐷 (𝐷,𝐺))
to formulate the final objective function for model training:

min
Θ,𝐷,𝐺

(𝐿𝑝 −𝑉𝐺 (𝐷,𝐺) −𝑉𝐷 (𝐷,𝐺)) . (13)

5 EXPERIMENTS
In this section, we first introduce our collected PDMP data, and
then conduct extensive experiments to comprehensively evaluate
the proposed model.
5.1 Dataset

Figure 3: Distributions of different data statistics.
The experimental dataset is collected from the PDMP of Ohio

State spanning the year of 2016, which consists of patients’ medi-
cal prescribing and dispensing records throughout the year. Each
record contains basic profiles of the corresponding patient (e.g., age
and sex), pharmacy and physician (e.g., specialty), the prescribing
and dispensing dates, as well as the information related to the dis-
pensed drug (e.g., drug class, supply days, and prescribed dosage).
In total, 4,791,522 records of 366,990 patients, 2,747 pharmacies,
38,122 physicians, and 17 opioids in combination with different
specifications are sampled for experiments. The selected opioids
are listed in Appendix B. Figure 3 shows the distributions of pa-
tients’ record length, number of prescribed drugs in combination
with their specifications, number of visited pharmacies and physi-
cians, as well as those of patients’ age and records’ time span in
days. By comparison, statistical distributions for male and female
groups are of minor difference and record-associated attributes (e.g.,
record length, time span) are either left or right skewed.

5.2 Experimental Setups
Data Preparation. We refer to the Morphine Milligram Equiva-
lent (MME) metric [11] stressed by CDC as the standard to label
the data. Specifically, we transform the opioid daily dose of pa-
tients to MME based on their prescription records and then assign
patients with positive labels if their daily MME exceed the CDC
recommended cut-off (i.e., 90 MME/day) for a few days, otherwise

negative. The details of MME and data labeling are provided in Ap-
pendix D. In our experiments, we utilize the first 9, 10 or 11 months’
records to predict labels regarding the future 3, 2 or 1 month(s), cre-
ating three different data splits. For example, given the previous 9
months’ prescribing history, we aim to predict whether a patient is
prone to be overprescribed in the next 3 months. Note that for each
history-future split variant, none of the patients are labeled positive
given only their historical records because our goal is predicting
patients at future risks rather identifying patients’ current statuses.
Therefore, each split variant has a different number of positive and
negative patients and their statistics are provided in Appendix D.
Furthermore, we trial two train-val-test split ratios: train/val/test
= 60%/10%/30% and 70%/10%/20%. In total, there are 3 × 2 set of
experimental settings. Moreover, because PDMP data is intensively
imbalanced (i.e., most of the patients have low overdose risk), the
majority group (patients with negative labels) is down-sampled
to construct a 50/50 balanced dataset (positive group with equal
size of negative group). We list the size of positive group, negative
group and downsampled negative group in Appendix D.
Baselines. To evaluate the performance of our proposed model,
we select 10 baseline models to compare with DDHGNN, including
one temporal sequence model (i.e., LSTM [17]), three static GNN
models (i.e., GCN [20], GAT [29] and GraphSage [14]), as well as
six dynamic GNN models (i.e., HGT [18], CTDNE [23], TGAT [32],
TGN [26], JODIE [21] and RxNet [38]), where HGT and RxNet
are originally designed for heterogeneous graphs. We explain the
implementation details of these baselines in Appendix E.
Reproducibility. We implement our model with Python (3.8.5),
Pytorch (1.9.1) and DGL (0.7.1). We use a three-layer-MLP as the
prediction layer in Eq. (11) and employ Adam and OneCycleLR in
Pytoch as the optimizer and scheduler. The code is included in the
supplement file and the dataset will be available upon paper publica-
tion. For baselines, we adopt LSTM’s open-source implementation
in Pytorch and borrow GCN, GAT, GraphSage and HGT’s open-
source implementations in DGL. For CTDNE, TGAT, TGN, JODIE
and RxNet, we refer the source codes provided by their authors.
We carefully tune the hyper-parameters of DDHGNN and baseline
models by grid search to obtain the best performance. More details
regarding hyper-parameter settings can be found in Appendix F.
Evaluation Metrics. Accuracy, F1 score and Area under the ROC
Curve (ROC-AUC) are utilized to evaluate the performance of dif-
ferent models for overprescribing risk prediction. Each experiment
is repeated three times with different random seeds. The average
results with variance are reported.

5.3 Overall Performance Comparison
The prediction performance of all models are shown in Table 1, from
which we have the following observations: (1) Dynamic models (in-
cluding LSTM and dynamic GNN models) significantly outperform
static models (i.e., GCN, GAT, GraphSage) on all the experimental
settings. This phenomenon is most likely caused by the loss of
temporal information in P&D graph. Thus, the static model cannot
identify the more recent records which have a stronger impact on
the patients. Consequently, the learned representations fail to reflect
the dynamic trends of patients’ prescribing behaviors; (2) Among
all dynamic models, the spatio-temporal baselines (i.e., HGT, TGAT,
TGN, CTDNE, RxNet) generally obtain better results than LSTM,
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Table 1: Overall performance comparison for over-prescribing prediction. Results are reported as mean±std%, the best perfor-
mance is bolded and runner-ups are underlined. Split ways are denoted as history months/future months (train/val/test).

Metric Accuracy Macro-F1 ROC-AUC Accuracy Macro-F1 ROC-AUC Accuracy Macro-F1 ROC-AUC

Split 9/3 Split (70/10/20) 10/2 Split (70/10/20) 11/1 Split (70/10/20)

LSTM 65.93±0.81 65.14±1.32 70.65±0.71 64.29±0.43 63.15±1.90 68.29±0.58 62.21±0.88 62.10±0.75 67.02±1.17
GCN 62.31±0.65 61.75±0.68 62.62±0.85 64.05±0.59 63.87±0.54 65.15±0.89 64.50±0.48 64.45±0.67 64.22±0.72
GAT 64.82±0.33 64.67±0.43 65.91±0.90 67.42±0.48 67.18±0.57 70.34±0.95 67.76±0.25 67.42±0.39 70.22±0.86

GraphSage 64.00±0.45 63.75±0.45 65.12±0.95 66.45±0.39 66.21±0.51 69.60±0.77 66.20±0.45 65.50±0.50 67.88±0.84
HGT 65.75±0.68 65.34±0.39 66.04±0.83 67.82±0.86 67.46±0.76 68.73±0.76 68.95±0.44 68.67±0.50 70.26±0.96
TGAT 67.65±0.49 67.42±0.58 70.23±0.94 69.75±0.65 69.73±0.81 70.45±1.10 70.50±0.40 70.35±0.42 71.68±0.80
TGN 69.06±0.38 68.87±0.40 70.56±0.71 70.37±0.61 70.24±0.55 71.57±0.92 71.05±0.59 70.97±0.56 72.42±0.63

CTDNE 66.18±0.56 66.21±0.51 67.78±0.90 68.58±0.74 68.12±0.77 69.48±0.88 67.77±0.48 67.47±0.52 69.21±0.72
JODIE 68.55±0.49 68.42±0.40 69.94±0.67 69.48±0.43 69.25±0.62 70.73±0.64 70.16±0.46 69.68±0.32 70.40±0.90
RxNet 70.73±0.39 70.41±0.42 71.46±0.75 72.62±0.36 72.58±0.33 73.45±0.70 73.38±0.20 73.24±0.26 74.23±0.88

DDHGNN 74.37±0.45 74.06±0.43 75.86±0.83 76.14±0.52 75.90±0.48 77.53±0.95 77.15±0.39 77.13±0.40 77.79±0.62

split 9/3 Split (60/10/30) 10/2 Split (60/10/30) 11/1 Split (60/10/30)

LSTM 66.10±0.98 66.02±0.54 70.74±0.74 64.46±0.20 63.94±2.22 69.14±0.78 63.35±0.62 63.02±0.90 66.28±1.10
GCN 60.73±0.54 60.32±0.49 60.71±0.68 62.22±0.38 62.05±0.46 62.17±0.60 62.52±0.48 62.08±0.45 62.33±0.70
GAT 61.85±0.42 61.70±0.40 61.88±0.75 65.15±0.41 64.83±0.32 68.77±0.78 64.72±0.56 64.25±0.39 67.50±0.60

GraphSage 60.96±0.38 60.78±0.31 60.66±0.80 63.95±0.58 63.70±0.60 65.46±0.83 64.54±0.65 64.11±0.36 65.18±0.85
HGT 64.15±0.50 64.00±0.56 64.64±0.65 66.42±0.32 66.32±0.35 65.71±0.49 66.28±0.60 66.06±0.45 67.95±0.72
TGAT 66.45±0.51 66.18±0.45 67.06±0.82 68.47±0.45 68.32±0.44 70.14±0.53 68.52±0.60 68.15±0.46 69.42±0.69
TGN 67.92±0.33 67.85±0.28 69.34±0.75 69.33±0.37 69.29±0.34 70.35±0.50 69.94±0.27 69.59±0.33 70.92±0.68

CTDNE 65.82±0.18 65.60±0.26 65.17±0.60 68.21±0.56 67.88±0.52 69.43±0.35 67.73±0.32 67.27±0.52 69.35±0.66
JODIE 67.26±0.44 67.15±0.50 68.20±0.90 68.45±0.46 67.72±0.57 69.90±0.68 68.10±0.52 67.50±0.65 69.26±0.54
RxNet 69.69±0.38 69.52±0.35 70.44±0.52 70.74±0.43 70.16±0.52 71.12±0.66 71.26±0.30 70.48±0.19 72.15±0.57

DDHGNN 73.58±0.35 73.50±0.38 74.52±0.77 74.95±0.27 74.66±0.37 75.81±0.45 75.52±0.41 75.46±0.48 76.28±0.41

demonstrating the effectiveness of taking spatial information into
consideration; (3) DDHGNN achieves stat-of-the-art performance
and beats all baselines on all experimental settings, indicating the
effectiveness of our proposed model. Additionally, RxNet gains the
runner-up performance, the superior performance of DDHGNN and
RxNet further prove the importance of preserving the semantics
inside a heterogeneous graph.
5.4 Ablation Study
To verify the effectiveness of different modules in DDHGNN, we
design five model variants and compare their performance with
DDHGNN. The details of these model variants are illustrated below
and the comparison results are shown in Table 2.
• w/o Edge. The edge features in Equation 2 are discarded.
• w/o Time. The temporal information in Equation 2 is discarded.
• w/o Inter. The inter-relation aggregation is skipped.
• w/o Disentangle. The prior-enhanced adversarial disentangler
is removed.

From Table 2, we can find that our model consistently outperforms
other variants for all settings. The model variant w/o Edge brings
the largest amount of performance deterioration, suggesting the im-
portance of dynamic drug-related information (quantity and days-
supply) and patient-related zipcode consistency. We also notice
that the performance of the model variant w/o time decreases by a
noticeable amount. By comparing DDHGNN and the two variants,
the advantage of considering both spatial and temporal information
is further revealed. On the other line, the inter-relation aggrega-
tion brings considerable performance elevation in that it combines

(a) Train/val/Test=70%/10%/20%

(b) Train/val/Test=60%/10%/30%
Figure 4: performance of different prior exchange ways.

multiple types of relations with learned weights and highlights the
more important semantics, which is more sophisticated than aver-
age summation. One can clearly see that the disentangle module
almost introduces the second largest improvement to DDHGNN,
especially for the split settings with a longer historical part. This
phenomenon indicates the effectiveness of DDHGNN in collecting
distinct and informative factors from entangled representations
and the impact is clearer for long-history-dependent predictions.

Another set of ablation study is to investigate the effectiveness
of our prior-exchange mechanism. The related model variants are
explained below and the comparison results are shown in Figure 4.
• w/o Exchange. The prior-exchange module is discarded.
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Table 2: Overall comparison of model variants’ performance. Results are reported as mean±std%, the best performance is bolded.
Split ways are denoted as history months/future months (train/val/test).

Metric Accuracy Macro-F1 ROC-AUC Accuracy Macro-F1 ROC-AUC Accuracy Macro-F1 ROC-AUC
Split 9/3 Split (70/10/20) 10/2 Split (70/10/20) 11/1 Split (70/10/20)

wo Edge 70.15±0.70 70.02±0.63 69.68±0.87 71.42±0.63 71.28±0.54 71.06±0.71 71.64±0.67 71.29±0.21 71.85±0.87
wo Time 72.23±0.45 72.20±0.32 73.08±0.71 73.85±0.37 73.56±0.41 75.74±0.68 74.24±0.56 74.15±0.55 76.32±0.85
wo Inter 71.88±0.65 71.57±0.59 71.65±0.69 73.06±0.50 72.84±0.45 73.62±0.94 73.87±0.47 73.70±0.38 74.70±0.65

wo Disentangle 72.45±0.59 72.27±0.64 73.64±1.16 73.32±0.56 73.08±0.64 75.20±0.87 74.38±0.19 74.30±0.25 75.49±0.58
DDHGNN 74.37±0.45 74.06±0.43 75.86±0.83 76.14±0.52 75.90±0.48 77.53±0.95 77.15±0.39 77.13±0.40 77.79±0.62

Split 9/3 Split (60/10/30) 10/2 Split (60/10/30) 11/1 Split (60/10/30)

wo Edge 68.75±0.58 68.50±0.60 68.68±0.48 69.65±0.52 69.58±0.40 70.02±0.87 70.65±0.16 70.60±0.24 71.34±0.25
wo Time 71.21±0.33 71.12±0.45 72.05±0.39 72.88±0.46 72.55±0.67 73.47±0.75 73.38±0.45 73.23±0.50 73.40±0.68
wo Inter 70.24±0.48 70.20±0.12 70.87±0.51 72.54±0.41 72.38±0.26 73.27±0.61 73.17±0.36 73.06±0.42 74.54±0.37

wo Disentangle 70.35±0.38 70.10±0.48 71.54±0.68 72.26±0.58 72.15±0.37 73.75±0.54 72.42±0.65 72.42±0.63 73.62±0.37
DDHGNN 73.58±0.35 73.50±0.38 74.52±0.77 74.95±0.27 74.66±0.37 75.81±0.45 75.52±0.41 75.46±0.48 76.28±0.41

• Random Exchange. The priors are exchanged between two
random samples, instead of samples within different classes.

The results from Figure 4 show that our model outperforms the two
model variants by a noticeable amount, and the variant with ran-
dom prior exchange achieves better results than the w/o exchange
variant in most cases, both of which indicate that our disentangler
is able to separate label-irrelevant information from the entangled
patient embedding, thus making it more informative.

5.5 Embedding Visualization

(b) TGN

(c) RxNet (d) DDHGNN

(a) JODIE

Figure 5: TSNE Visualization of positive (blue) and negative
(red) patients’ embeddings generated by different models.

To further examine our model’s capabilities, we visualize the
generated patient embeddings using the t-SNE [28] algorithm, as
shown in Figure 5. Here, we choose three other dynamic mod-
els (i.e., JODIE, TGN and RxNet) for comparison. It can be seen
that embeddings of positive and negative patients generated by
the two heterogeneous models (i.e., RxNet and DDHGNN) are less
overlapped than the rest compared models. Furthermore, the em-
beddings generated by DDHGNN bring the largest cluster-wise
distance for patients with different labels, therefore resulting in
better performance.
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Figure 6: The upper figure is the comparison of refill number,
physician number, and pharmacy number of the two pa-
tients respectively. The middle figure shows the ten-month
overdose risks predicted by DDHGNN for the two patients
evaluated every two months. The bottom figure shows the
average daily MMEs transformed from their prescriptions
every two months.

5.6 Case Study
To evaluate the ability of DDHGNN in capturing prescribing pat-
terns and predicting real-time potential over-prescribing risk, we
compare the predicted risk levels of two patients with different
labels in our dataset, as shown in Figure 6. Their demographic and
medical information is as follows:
• The low-risk patient is a 55-year-old femalewho fills Hydrocodone
& Comb and Tramadol monthly with relatively stable drug doses
every time. Her drugs are prescribed by the same physician and
she refills her prescriptions at two pharmacies.
• The high-risk patient is a 42-year-old male who was prescribed
with Oxycodone&Comb andMorphine Sulfate &Comb. He visits
two physicians for the same drug and refills his prescriptions at
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three pharmacies. His drug doses are increasing gradually and
his daily MME approaches to almost 90 by the end of October.

From Figure 6, we can find that both of the two patients are on a low
overdose risk level before April, after which the differences between
their risk levels significantly increase. Specifically, the high-risk
patient gradually increases his dosage after April and behaves more
unusually after June, while the low-risk patient refills her drugs
in a relatively stable pattern. The clear difference between the
two patients indicates the effectiveness of DDHGNN in detecting
suspicious prescribing patterns timely, which is essential for early
prediction of overdose patients. Patients predicted by DDHGNN
as high-risk can be intervened early with medical advising, thus
decreasing their overdose risk.

6 CONCLUSION
In this paper, we study the problem of predicting patients at high
risk of opioid overdose, which is of great importance in current pub-
lic healthcare surroundings. To target this issue, we propose a novel
model named DDHGNN, which integrates spatial and temporal
dependencies simultaneously while preserving the heterogeneity
of the constructed P&D graph via a DHGAT module with a hier-
archical aggregation mechanism. Moreover, DDHGNN introduces
a prior-enhanced adversarial disentangler to collect factors par-
ticular to patients’ prescribing patterns for overdose prediction.
Extensive experiments are conducted on a 1-year PDMP data to
verify the effectiveness of DDHGNN by comparing it with state-
of-the-art methods, revealing its promising further in preventing
opioid crisis. More experiments about evaluating the performance
of DHTGNN on different opioids and hyper-parameter sensitivity
are demonstrated in Appendix G and Appendix H.
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A PSEUDO-CODE OF DDHGNN

Algorithm 1: DDHGNN Learning and Prediction
Data: Heterogeneous temporal graph G𝑡 , node features X,

edge features E, layer 𝐿, priors o, node class labels Y
Result: Probabilities 𝒚

1 for each epoch do
2 h0𝑣,𝑡 ← Eq. 1;
3 for 𝑙 = 1 to 𝐿 do
4 h𝑙,𝑟𝑣,𝑡 ← Eqs. 2-3;
5 h𝑙𝑣,𝑡 ← Eqs. 4-6;

6 H← H𝐿
𝑇

7 Feed H into disentangler by cross-label pair
8 for each cross-label pair (𝑖, 𝑗) in a batch do
9 Sample a batch of real inputs pair

(< h𝑖 , o𝑖 , 𝑦𝑖 >, < h𝑗 , o𝑗 , 𝑦 𝑗 >) ⊲ 𝑦𝑖 ≠ 𝑦 𝑗 ;
10 Generate synthetic inputs for both patients

< 𝐺𝑑 (𝐺𝑒 (h𝑖 ), o𝑖 , z) , o𝑖 , 𝑦𝑖 >;
11 Exchange their priors then generate another pair of

synthetic inputs < 𝐺𝑑
(
𝐺𝑒 (h𝑗 ), o𝑖 , z

)
, o𝑖 , 𝑦𝑖 >;

12 Update 𝐷 by Eq. 9;
13 Freeze 𝐷 ;
14 Generate a batch of synthetic inputs

< 𝐺𝑑 (𝐺𝑒 (h𝑖 ), o𝑖 , z) , o𝑖 , 𝑦𝑖 > and prior-exchange
synthetic inputs < 𝐺𝑑

(
𝐺𝑒 (h𝑗 ), o𝑖 , z

)
, o𝑖 , 𝑦𝑖 >;

Update 𝐺 by Eq. 10

15 return 𝐺𝑒 (H)
16 Compute the prediction loss 𝐿𝑝 with 𝐺𝑒 (H) via Eqs. 12 and

update Θ

B SELECTED OPIOIDS
The task of our work is to predict patients with high-risk opioid
overdose intention, while PDMP contains many records associ-
ated with drugs other than opioids. Therefore, records associated
with patients who have any historical record related to other medi-
cations are eliminated. Specifically, the drug types are limited to
Morphine, Hydrocodone, Codeine, Hydromorphone, Oxycodone,
Tapentadol, Oxymorphone, Burtorphanol, Pentazocine, Tramadol,
Meperidine, Dihydrocodeine, Levorphanol, Fentanyl, Methadone,
Buprenorphine and Opium.

C PRIOR COMPUTATION
The priors is generated from three relation views (i.e., patient-
physician, patient-pharmacy and patient-drug). Taking patient-
physician relation as an example to illustrate how we generate the
prior related to this relation. Assume there are 𝑁 patients in total
and the number of physicians that each patient visited at timestamp
𝑡 can be represented by M = [𝑚1,𝑚2, . . . ,𝑚𝑁 ]. Then, for patient 𝑖 ,
we calculate its patient-physician prior as:

𝑜1𝑖 =

∑𝑁
𝑗=1

(
𝑚𝑖 ≤ 𝑚 𝑗 ∧ 𝑖 ≠ 𝑗

)
𝑁

(14)

Based on the number of pharmacies and drugs connected to each
patient , we can compute the priors specific to patient-pharmacy

and patient-drug in a similar way. By concatenating these three
priors, we gain the prior vector for patient 𝑖 , denoted as o𝑖 ∈ R1×3

D OVERDOSE LABELING
We label our PDMP data based on the definition of Morphine Mil-
ligram Equivalents (MME) stressed in [11] and the formulation to
compute MME is given as follows:
MME/day =(Number of Units or Days Supply)×

Strength per Unit ×MME Conversion Factor (15)

Since Centers for Disease Control and Prevention (CDC) recom-
mends patients to avoid or carefully justify increasing dosage to
90 MME/day [11], we make the following definitions: (1) Once a
prescription is filled, the converted daily MME will be added to
the patient’s daily MME amount for the next days-supply days; (2)
Within the duration, if the patient is prescribed with another drug,
the daily MME is added to the overlapping days; (3) A patient is
considered at high risk of over-prescribing if his/her average daily
MME exceeds 90 for 4 straight days, or the patient has over 8 days
with a daily MME over 90 in a month. We calculate the daily MMEs
for each patient on each day of 2016 and label their over-prescribing
risks following the above definitions. Given the label definition rule,
we conduct experiments on three history-future split variants and
label the data based on the records of last 3, 2 and 1 month(s). The
statistics of the three split variants are provided in Table 3

Table 3: History-Future Split Patient Label Distribution

Split Ratio 9/3 10/2 11/1

Negative 258506 258048 257773
Down-sampled Negative 10711 6711 3507

Positive 10711 6711 3507

E BASELINE IMPLEMENTATION
Among the baselines of this work, HGT and RxNet are originally
used for dynamical heterogeneous graph, thus we can almost di-
rectly apply them to PDMP data. However, other baselines are not
proposed for dynamical heterogeneous graph, therefore we make
some specific adaptions for these baselines in our experiments. Par-
ticularly, we transform all historical prescription records of each
patient to sequential inputs for LSTM, and each prescription repre-
sents a token in the sequence. Due to the reason that patients have
different number of records, we pad the sequence inputs of all the
patients to the same length. For the static GNN models (i.e., GCN,
GAT, GraphSage), we first transform the heterogeneous graph into
homogeneous graph and then remove the temporal information in
the dynamic graph to run the experiment. For the dynamic graph
learning baselines designed for homogeneous graph (i.e., CTDNE,
TGAT, TGN, JODIE), we simply transform the heterogeneous graph
into homogeneous and follow the node classification case provided
by their original implementation.

F PARAMETER SETTING
During the experiments, we fix some hyper-parameters for the con-
venience of tuning work: the depth of all GNN models is set to 2,
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the weight decay is set to 1e-5. Other import hyper-parameters are
tuned on each split by grid search. Specifically, we search learning
rate in {0.001, 0.005, 0.01, 0.05}, batch size in {32, 64, 128}, embed-
ding hidden dimension 𝑑 in {16, 32, 64, 128, 256}, head number 𝐾
in {1, 2, 4, 8, 16}, dropout in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, balance
coefficient _ in {0.1, 0.5, 1.0}, to obtain best results of DDHGNN
and all the baselines.

G PERFORMANCE OVER DIFFERENT DRUGS
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Figure 7: Accuracy over different drugs in percentage.
To further estimate our model over different drugs, we show

the predicted results in terms of accuracy for each drug group in
Figure 7, where all the patients in each drug group have at least
one corresponding prescribing record. We run our model for the
prediction task over each group of patients for evaluation. From
Figure 7, one can clearly see that there are variations among the
performance of different drug groups, where the commonly used
opioids in PDMP, like Oxycodone, Tramadol and Codeine, achieve
better performance than other less prescribed opioids. The better
performance over the popular opioids indicates the ability of our
model to detect drug crisis (i.e., the related-death and hospitalization
number increase with the popularity of a certain opioid).

H PARAMETER SENSITIVITY ANALYSIS
In this section, we study the performance sensitivity of the embed-
ding hidden dimension 𝑑 and the number of attention head 𝐾 on
the proposed DDHGNN.

H.1 Embedding Dimension
We first investigate the effect of the dimension of the hidden em-
bedding 𝑑 on performance, the search space is stated in Appendix
F and we demonstrate the experimental results in Figure 8. We can
find that 𝑑=32 is the optimal embedding hidden dimension value
for most of the settings. A common phenomena found is that the
performance of our model first increases and then decreases as
the embedding dimension increases. The reason is that DDHGNN
needs a suitable dimension to encode the informative factors and a
larger dimension may introduce additional redundancies.

H.2 Number of Attention Head
We further check the influence of the number of attention head
𝐾 on the prediction performance. We vary 𝐾 in the search space

(a) Train/val/Test=70%/10%/20%

(b) Train/val/Test=60%/10%/30%

Figure 8: Prediction performance in accuracy of DDHGNN
w.r.t. different hidden embedding dimension.

(a) Train/val/Test=70%/10%/20%

(b) Train/val/Test=60%/10%/30%

Figure 9: Prediction performance in accuracy of DDHGNN
w.r.t. different number of attention head.

introduced in 8 and exhibit the results in Figure 9. One can see
that none of the settings achieves the best performance when 𝐾=1,
indicating multi-head attention mechanism generally improve the
performance of DDHGNN. Additionally, the best values of 𝐾 for
different settings are not exactly same, therefore the value of 𝐾
should be carefully tuned to achieve optimal performance.
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