
Non-parametric Graph Convolution for Re-ranking in
Recommendation Systems

Zhongyu Ouyang∗
zhongyu.ouyang.gr@dartmouth.edu

Dartmouth College
Hanover, New Hampshire, USA

Mingxuan Ju†∗
mju@snap.com

Snap Inc.
Bellevue, Washington, USA
University of Notre Dame
Notre Dame, Indiana, USA

Soroush Vosoughi‡
soroush.vosoughi@dartmouth.edu

Dartmouth College
Hanover, New Hampshire, USA

Yanfang Ye‡
yye7@nd.edu

University of Notre Dame
Notre Dame, Indiana, USA

Abstract
Graph knowledge has been proven effective in enhancing item
rankings in recommender systems (RecSys), particularly during the
retrieval stage. However, its application in the ranking stage, espe-
cially when richer contextual information in user-item interactions
is available, remains underexplored. A major challenge lies in the
substantial computational cost associated with repeatedly retriev-
ing neighborhood information from billions of items stored in dis-
tributed systems. This resource-intensive requirement makes it diffi-
cult to scale graph-based methods in practical RecSys. To bridge this
gap, we first demonstrate that incorporating graphs in the ranking
stage improves ranking qualities. Notably, while the improvement
is evident, we show that the substantial computational overheads
entailed by graphs are prohibitively expensive for real-world recom-
mendations. In light of this, we propose a non-parametric strategy
that utilizes graph convolution for re-ranking only during test time.
Our strategy circumvents the notorious computational overheads
from graph convolution during training, and utilizes structural
knowledge hidden in graphs on-the-fly during testing. It can be
used as a plug-and-play module and easily employed to enhance the
ranking ability of various ranking layers of a real-world RecSys with
significantly reduced computational overhead. Through compre-
hensive experiments across four benchmark datasets with varying
levels of sparsity, we demonstrate that our strategy yields noticeable
improvements (i.e., 8.1% on average) during testing time with little
to no additional computational overheads (i.e., 0.5% on average).
Code: https://github.com/zyouyang/RecSys2025_NonParamGC.git
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1 Introduction
Recommender systems (RecSys) are central to user experience in
diverse online applications, ranging from product recommenda-
tion on e-commerce platforms [26, 31, 39] and personalized ad-
vertising [6, 15, 25, 35], to friend recommendation on social me-
dia [5, 13, 14, 23]. Typical recommender systems follow a two-stage
pipeline: retrieval and ranking. The retrieval stage filters a massive
item pool, often billions of items, down to amanageable subset using
lightweight models or approximate matching. This stage commonly
leverages collaborative filtering (CF), which utilizes historical user-
item interactions to recommend items based on similar behavioral
patterns [16, 19, 30, 37]. Classical CF approaches typically employ
matrix factorization [30, 37], representing users and items with
learned embeddings to reconstruct historical interactions.

In contrast, the ranking stage uses more sophisticated models
incorporating rich contextual features such as user demograph-
ics, item attributes, and interaction details like transaction times-
tamps. Context-aware ranking models better capture user prefer-
ence variability across different contexts. To balance performance
and efficiency, the ranking problem is typically formulated as a
click-through rate (CTR) prediction task [8, 11, 38], simplified as
predicting binary interaction outcomes. The predicted probabilities
serve as scores for ranking candidate items.

Recently, graph neural networks (GNNs) have emerged as pow-
erful methods for modeling relational data, inspiring extensive
research on user-item interaction bipartite graphs in RecSys [12,
27, 40, 45]. GNN-based methods like NGCF [40], LightGCN [12],
and SimGCL [45] have shown significant improvements, notably
in the retrieval stage, by leveraging high-order connectivity within
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interaction graphs, achieving performance gains up to approxi-
mately 40% compared to traditional methods [40]. Nevertheless, the
integration of GNNs into the ranking stage remains underexplored,
primarily due to the computational complexity of repeatedly query-
ing graph neighborhoods, a bottleneck magnified by the reliance
on detailed contextual data.

A recent attempt to incorporate graphs at the ranking stage,
the Graph Convolution Machine (GCM), directly applies message
passing over user-item bipartite graphs [42], enriching nodes and
edges with contextual features. Despite improved ranking quality,
GCM faces significant hurdles in practical deployment:

(i) GCM is computationally prohibitive to train at an industrial
scale, where billions of users and items reside on distributed infras-
tructures. The message-passing operation necessitates querying
neighborhood embeddings repeatedly, incurring quadratic compu-
tational complexity relative to batch sizes. This overhead is further
exacerbated in distributed environments due to bandwidth con-
straints.

(ii) Integrating GCM with existing context-aware RecSys pipelines
requires extensive engineering effort, as industrial systems pre-
dominantly utilize deep models like DCN [38] designed for tabular,
independently and identically distributed (i.i.d.) data, contrasting
sharply with non-i.i.d. graph structures. Therefore, it is critical to
develop a practical method to efficiently leverage graph knowledge
within existing industrial frameworks.

Consequently, this work addresses the following core research
question:

How can we effectively yet efficiently integrate graph
knowledge into the ranking stage of existing RecSys?

To address this gap, we first empirically validate the potential
benefits of combining contextual and structural information. Specif-
ically, we perform a proof-of-concept experiment substituting tradi-
tional embedding tables in a widely used industrial ranking model
with a graph encoder performing message passing. Although this
approach significantly boosts performance across four benchmark
datasets, it incurs substantial computational costs and requires
infrastructural modifications, limiting practical applicability.

Motivated by these limitations, we propose a test-time augmen-
tation strategy that incorporates graph structure only at inference,
bypassing expensive training-phase computations. Our method
seamlessly applies to any pre-trained ranking model with minimal
additional overhead, involving four simple steps: (i) constructing
graph-based similarity matrices between users and items; (ii) re-
trieving relevant candidate users and items based on these similar-
ities; (iii) forming augmented user-item pairs to obtain predicted
interaction probabilities from the target model; and (iv) aggregating
these predictions through weighted fusion to generate a final rank-
ing score. Extensive experimentation across multiple benchmark
datasets demonstrates the efficacy and efficiency of our approach,
achieving significant ranking improvements with negligible addi-
tional computational costs.

2 Non-parametric Graph Convolution for
Re-ranking

Without loss of generality, we adopt a CTR model as our ranking
model and first illustrate the standard paradigm in industrial Rec-
Sys, which does not incorporate graph information. Subsequently,
we present a graph-based encoder designed to integrate structural
user-item relationships. Although this encoder notably improves
ranking performance, it introduces substantial computational over-
head—up to approximately 1000% increase during training—which
severely limits its practicality. To resolve this challenge, we propose
a test-time graph augmentation strategy that leverages graph-based
insights exclusively during inference, significantly enhancing rank-
ing quality without incurring additional training costs. Figure 1
provides an overview of our proposed approach.

2.1 Industrial Ranking Paradigms
Formally, consider a user 𝑖 and item 𝑗 represented by their IDs
𝑥𝑖 and 𝑥 𝑗 , respectively, along with contextual features associated
with their interaction, denoted as c𝑖 𝑗 ∈ R𝑑

𝑐
, where 𝑑𝑐 represents

the contextual feature dimension. The encoder for user/item IDs
is defined as 𝑓 (·) : R→ R𝑑 , mapping IDs to latent embeddings of
dimension 𝑑 , and the contextual feature encoder as ℎ(·) : R𝑑𝑐 →
R𝑑

′
, where 𝑑′ is the dimensionality of the contextual embeddings.
In typical CTR models, ranking is formulated as a binary classi-

fication problem, aiming to predict the interaction probability be-
tween a given user-item pair within the range [0,1]. This process is
illustrated in Figure 1(c). Specifically, the input vector z𝑖 𝑗 ∈ R2𝑑+𝑑

′

to a CTR model is constructed as:

z𝑖 = 𝑓 (𝑥𝑖 ), z𝑗 = 𝑓 (𝑥 𝑗 ), z𝑐𝑖 𝑗 = ℎ(c𝑖 𝑗 ), (1)

z𝑖 𝑗 =
[
z𝑖 ∥ z𝑗 ∥ z𝑐𝑖 𝑗

]
, (2)

where ∥ denotes concatenation. This embedding strategy is depicted
in Figure 1(a,c).

The conventional ID encoder 𝑓 (·) used in ranking stages is typi-
cally a lookup embedding table represented as 𝐸 ∈ R( |U |+|I | )×𝑑 ,
with U and I denoting the sets of users and items, respectively.
With the encoded embeddings, the CTR model applies a rating
function 𝑟 (·) : R2𝑑+𝑑 ′ → R to estimate the interaction likelihood,
defined as 𝑝𝑖 𝑗 = 𝑟 (z𝑖 𝑗 ).

To illustrate how contextual information is incorporated into
ranking models, we highlight DCN [39], a widely used CTR model
in industrial scenarios. DCN consists of two primary components:
a cross network and a deep network. The cross network explicitly
models feature interactions via cross layers:

z(𝑙+1) = z(0)z(𝑙 )
⊺
w(𝑙 ) + b(𝑙 ) + z(𝑙 ) , (3)

where z(𝑙 ) , z(𝑙+1) ∈ R𝑑 are the input and output vectors for the 𝑙-th
cross layer, and w(𝑙 ) , b(𝑙 ) ∈ R𝑑 represent learnable parameters.

Conversely, the deep network captures complex, nonlinear in-
teractions through fully connected layers:

h(𝑙+1) = ReLU(W(𝑙+1)h(𝑙 ) + b(𝑙 ) ), (4)

where h(𝑙 ) , h(𝑙+1) denote the input and output of the 𝑙-th hidden
layer, andW(𝑙 ) , b(𝑙 ) are trainable parameters.
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Figure 1: (a) Table encoder for user/item ID embeddings; (b) Graph-enhanced user/item ID encoder; (c) Ranking score calculation;
(d) Proposed test-time graph augmentation strategy.

Given a user-item pair, the initial inputs are set as z(0) = h(0) =
z𝑖 𝑗 . The outputs from the cross and deep networks are concate-
nated and passed through a two-class logits layer to yield the final
prediction:

𝑝𝑖 𝑗 = 𝜎

(
[z(𝐿1 ) ∥ h(𝐿2 ) ]wlogits

)
, (5)

where 𝜎 (𝑥) = 1/(1+𝑒−𝑥 ) andwlogits are weights in the logits layer.
The DCN model optimizes the binary cross-entropy loss:

L = − 1
𝑁

∑︁
{𝑖, 𝑗 }∈𝑇𝑟

𝑦𝑖 𝑗 log(𝑝𝑖 𝑗 ) + (1−𝑦𝑖 𝑗 ) log(1−𝑝𝑖 𝑗 ) +𝜆
∑︁
𝑙

∥w(𝑙 ) ∥2,

(6)
with 𝑇𝑟 denoting the training set of interaction pairs, 𝑦𝑖 𝑗 being the
binary labels, and 𝜆 the regularization coefficient.

2.2 A Naive Graph-based Ranking Framework
In this section, we first introduce the definition of the user-item in-
teraction bipartite graph that depicts rich topological relationships
such as co-purchase and shared interests. Then, we present how
graph knowledge can be naively incorporated into existing ranking
methods in their training processes.

Formally, let the interaction matrix beM ∈ {0, 1} |U |× |I | , where
𝑚𝑖 𝑗 = 1 represents an observed positive interaction between user
𝑖 and item 𝑗 , and 𝑚𝑖 𝑗 = 0 otherwise. The interaction graph is
defined as G = (V, E), whereV = U ∪ I is the set of nodes, and
E = {(𝑖, 𝑗) |∀𝑖 ∈ U,∀𝑗 ∈ I,𝑚𝑖 𝑗 = 1} is the set of edges.

A graph-based encoder utilizes the interaction bipartite graph to
enhance the ID embedding quality. Unlike a table encoder which
independently encodes the users and items, when generating the
user and item embeddings, a graph encoder additionally leverages
their graph relationships (e.g., co-purchase, shared interests, etc).
We depict the graph encoder in Figure 1 (b).

Most existing graph-enhanced CF methods in the retrieval stage
focus on scenarios without the incorporation of contextual fea-
tures, such as NGCF [40] and LightGCN [12]. However, whether
or not their effectiveness can be transferred to existing ranking
methods needs further investigation. Since the message passing
mechanism [12, 17, 40] in graph-enhanced CF methods is the key
to extracting graph knowledge, a natural way to extend ranking
methods with graph knowledge is to include this mechanism in
their paradigms. Following this path, we adapt a well-studied linear
message passing mechanism [12] to existing ranking methods.

Specifically, let 𝑓𝑔 (·, ·) : G × 𝑥 → R𝑑 be the graph encoder. For
user 𝑖 and item 𝑗 , 𝑓𝑔 (·, ·) conducts message passing in each layer to
propagate and aggregate information from the neighborhood. The
graph-encoded embedding for node 𝑖 (user or item) is formulated
as follows:

z𝑖 = 𝑓𝑔 (G, 𝑥𝑖 ) =
𝐿∑︁
𝑙=0

𝑎𝑙z
(𝑙 )
𝑖

, (7)

where z(𝑙 )
𝑖

=
∑︁
𝑣∈𝑁𝑖

1√︁
|𝑁𝑖 |

√︁
|𝑁 𝑗 |

z(𝑙−1)
𝑗

and z(0)
𝑗

= 𝑓 (𝑥 𝑗 ), (8)

In Equation (8), z(𝑙 )
𝑖

is the embedding for node 𝑖 in layer 𝑙 , 𝑁𝑖 is the
set of neighbors for node 𝑖 in G, and 𝑎𝑙 is the readout coefficient
for each layer-𝑙 ’s embeddings. With the obtained graph-based user
and item ID embeddings, we can construct the input features fol-
lowing Equation (2). These input features can further be fed into
any ranking method (e.g., DCN) to predict the interaction probabil-
ities/ranking scores.
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Table 1: Comparative ranking performance of DCNV2 [39]
with a table encoder (Tab.), those of DCNV2 with a graph en-
coder (Graph), the relative change (Δ%), and time in seconds
per training epoch and inference.

Metric Recall@10 ↑ Recall@20 ↑
Dataset Tab. Graph %Δ Tab. Graph %Δ

ML-1M 10.73 11.72 9.25 16.81 17.93 6.66
Yelp 4.25 4.30 1.18 9.87 10.23 3.59
AmzBook 3.28 3.73 13.79 7.53 8.30 10.23
Anime 15.73 16.97 7.92 23.76 24.91 4.84

Metric NDCG@10 ↑ NDCG@20 ↑
Dataset Tab. Graph %Δ Tab. Graph %Δ

ML-1M 10.87 12.31 13.26 12.59 13.93 10.59
Yelp 2.20 2.16 -1.91 3.75 3.79 1.23
AmzBook 1.92 2.09 8.98 3.14 3.43 9.23
Anime 13.90 15.73 0.13 16.41 18.07 10.09

Metric Time / Train Epoch ↓ Inference Time (s) ↓
Dataset Tab. Graph %Δ Tab. Graph %Δ

ML-1M 1.81 4.06 124.31 0.10 0.24 140.00
Yelp 3.53 15.18 330.03 0.17 0.88 417.65
AmzBook 5.56 29.53 431.12 0.25 1.76 604.00
Anime 9.05 58.30 544.20 0.47 3.52 648.94

2.3 The Benefit of Graphs to Ranking Methods
In comparison with user and item ID embeddings obtained from
a table encoder as described in Section 2.1, those obtained from a
graph encoder as introduced in Section 2.2 possess additional graph
topological knowledge. To empirically verify the benefit of such
graph knowledge to CTR methods, we design an experiment where
all comparison models are identical except their encoders. Specifi-
cally, we compare the ranking performance of a DCNV2 [39] with a
table encoder and that of a DCNV2 with a graph encoder. Since the
graph encoder additionally incorporates graph knowledge into ID
embeddings, and these two frameworks only differ in the encoding,
the ranking performance gap can indicate how integrating graph
knowledge affects the ranking method (i.e., DCNV2).

In this experiment, we train models on four benchmark datasets,
including Yelp2018 [11], Amazon-Books [43], MovieLens-1M [7],
and Anime [4]. We evaluate the models’ ranking ability with two
ranking-based metrics, recall and NDCG, where larger values indi-
cate superior ranking ability. Their results are the averaged perfor-
mance under five random seeds and are shown in Table 1, where the
Tab. columns represent results of the DCNV2 with a table encoder,
and Graph columns refer to those of the DCNV2 with a graph
encoder. Compared with DCNV2 equipped with a table encoder,
we observe that DCNV2 equipped with a graph-based encoder
consistently surpasses its counterpart across the four datasets and
all metrics. The enhancement suggests that the additional graph
knowledge incorporated in the graph-based ID embeddings helps
improve the ranking abilities of the target ranking method.

However, this integration incurs a noticeable increase in com-
putational overhead. It incurs on average ∼480% more overheads
for the total training time, and ∼605% more for the total testing
time. These excess computational overheads arise from the mes-
sage passing operations described in Equation (8) – to acquire the
ID embedding of a user/item, the model is required to query rep-
resentations of all nodes within the 2-hop neighborhood of the
node to conduct the further aggregation in between. Moreover, this
phenomenon can be further aggravated on dense and large graphs
where the average number of neighbors per node is large. For ex-
ample, it encounters ∼1049% more time in training and ∼1261%
more in testing in the Anime dataset. Therefore, in industrial ap-
plications where billions of users and items construct a massive
graph, simply substituting the table encoder with a graph-based
encoder is prohibitively expensive and hence impractical.

2.4 A Simple yet Effective Solution:
Non-parametric Graph Convolution

Although the introduced graph knowledge helps improve the rank-
ing ability of the methods, significant computational overheads
come along as well. The majority of computational overheads are
brought by training with the graph encoder, where the en-
coder repetitively performs the computationally expensivemessage-
passing operation on every iteration.

To address the acute problem of the growth of computational
resources, we divert the integration of graph knowledge from the
training phase to the test time, with the proposed strategy shown in
Figure 1 (d). Injecting graph knowledge at testing time enjoys two
benefits: (i) It obviates the forward passing and backpropagation
entailed by message passing during training in Equation 8, whose
computational overhead increases quadratically wrt the dataset
density [10, 48]; (ii) It avoids the computational overheads brought
by repetitively performing message passing during training since it
only performs message passing once at testing time. Our strategy
can be decoupled into the following four steps:

Step 1: Constructing Similarity Matrices
The first step is to construct two similarity matrices within users
and items based on graph knowledge. We denote the similarity
matrix within users as A𝑢 , and the matrix within items as A𝑖 ,
where both depict the co-purchase relationship. The two matrices
are formulated based on the interaction matrixM:

A𝑢 = D
− 1

2
𝑢 Â𝑢D

− 1
2

𝑢 , Â𝑢 = MM⊺,

A𝑖 = D
− 1

2
𝑖

Â𝑖D
− 1

2
𝑖

, Â𝑖 = M⊺M,

(9)

where D𝑢 ∈ R |U |× |U | and D𝑖 ∈ R | I |× |I | are diagonal matrices
with D𝑢/𝑖 [𝑘, 𝑘] =

∑
𝑗 A𝑢/𝑖 [𝑘, 𝑗]. Intuitively, Â𝑢 [𝑖, 𝑗] represents the

number of items interactedwith both user 𝑖 and 𝑗 . Similarly, Â𝑖 [𝑘, 𝑗]
represents the number of users interacted with both item 𝑘 and 𝑗 .

For popular users/items associated with massive interactions,
their corresponding entries in Â𝑢/𝑖 tend to numerically dominate
the corresponding entries of unpopular users/items associated with
relatively fewer interactions. In other words, the similarity scores
between popular users/items are consistently larger than those
between unpopular users/items.
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Figure 2: An example of calculating the weights for aggregat-
ing the inference results of the constructed user-item pairs.
The top-2 similar users and items are retrieved to construct
2 ∗ 2 = 4 user-item pairs.

To remove the bias caused by node popularity (i.e., node degree),
we further normalize Â𝑢/𝑖 by accounting for the varying degree
of each user/item, and denote the normalized similarity matrices
as A𝑢/𝑖 . This normalization step prevents nodes (users or items)
with disproportionately high degrees from occupying overly high
similarity scores [17]. Therefore, we regard A𝑢/𝑖 as the similarity
matrices of users/items.

Step 2: Retrieving Relevant User/Item Candidates
Relevant users and items based on the similarity matrices A𝑢/𝑖
are retrieved in the second step. Specifically, for user 𝑖 , we obtain
𝑛𝑘 users with the corresponding top-𝑛𝑘 similarity scores in A𝑢 [𝑖],
denoted as U𝑖 , where A𝑢 [𝑖] refers to the 𝑖-th row of A𝑢 . Simi-
larly, for item 𝑗 , we obtain 𝑛𝑘 items with the corresponding top-𝑛𝑘
similarity scores in A𝑖 [ 𝑗], denoted as I𝑗 . The corresponding 2𝑛𝑘
similarity scores inA𝑢/𝑖 are extracted to further calculate the aggre-
gation weights of the later constructed user-item pairs. Intuitively,
the higher the user/item similarity score is, the more aggregation
weights should be assigned to the involved user-item pairs.

Step 3: Constructing Relevant User-item Pairs
Since the users and items are selected based on the similarities
in A𝑢/𝑖 , which is constructed based on the collaborative filtering
signals in M, the interaction signals between the selected users
and items naturally contain structural knowledge. Consequently,
a set of relevant user-item pairs is constructed by combining each
user in U𝑖 with each item in I𝑗 . This set contains 𝑛2𝑘 pairs and is
defined as {M𝑖 𝑗 : (𝑢, 𝑣) |∀𝑢 ∈ U𝑖 ,∀𝑣 ∈ I𝑗 }. For each user-item pair
inM𝑖 𝑗 , we calculate its weight as the multiplication of the corre-
sponding user and item similarity scores, as shown in the middle
of Figure 2. We denote the weight matrix for all user-item pairs
inM𝑖 𝑗 as Weight(M𝑖 𝑗 ), where Weight(M𝑖 𝑗 ) [𝑢, 𝑣] represents the
weight for the user 𝑢 and item 𝑣 pair.

Step 4: Label Aggregation Among Relevant Ranking Scores
After obtaining the 𝑛2

𝑘
user-item pairs, the target ranking model

is queried for the corresponding 𝑛2
𝑘
inference results, which are

aggregated based on each pair’s weight Weight(M𝑖 𝑗 ) [𝑢, 𝑣]:

𝑝′𝑖 𝑗 =
∑

(𝑢,𝑣) ∈M𝑖 𝑗
Weight(M𝑖 𝑗 ) [𝑢, 𝑣] ∗ 𝑟 (z𝑢𝑣)∑

(𝑢,𝑣) ∈M𝑖 𝑗
Weight(M𝑖 𝑗 ) [𝑢, 𝑣]

, (10)

z𝑢𝑣 = [𝑓 (𝑥𝑢 ) ∥ 𝑓 (𝑥𝑣) ∥ ℎ(c𝑢𝑣)] , (11)

where 𝑟 (·) refers to an arbitrary trained ranking model such as the
one we describe in Section 2.1. The aggregated inference result 𝑝′

𝑖 𝑗

is the final re-ranking score.
Although Weight(M𝑖 𝑗 ) is feasible to aggregate the inference

results, we notice that the contribution proportion of the most
similar user-item pair (i.e., pairs constructed with the most similar
user and item) is too small. For the example in Figure 2, the most
similar pair only contributes to 1/(1 + 0.25 + 0.5 + 0.125) ≈ 53% of
the final result.

This overly small proportion may deviate the final result too
much from the prediction of the original user-item pair, and thereby
downgrade the performance. To resolve this issue, we adopt a pair-
wise aggregation mechanism: (i) First, normalize the weights in
Weight(M𝑖 𝑗 ) by dividing them by themaximum value in thematrix.
This step normalizes the values in Weight(M𝑖 𝑗 ) between 0 to 1;
(ii) Second, modify the aggregation weight for the most similar pair
(i.e., the pair with the weight value as 1) by considering aggregating
the pairwise inference result between this pair and the other pairs,
as follows:

Wegiht(M𝑖 𝑗 ) [𝑢′, 𝑣 ′] =
∑︁

(𝑢,𝑣)≠(𝑢′,𝑣′ )
(1 −Weight(M𝑖 𝑗 ) [𝑢, 𝑣]),

(12)
where 𝑢′, 𝑣 ′ = argmax

(𝑢,𝑣)
Weight(M𝑖 𝑗 ) [𝑢, 𝑣] .

The final re-ranking score is derived using Equation 11 with the
maximum entry in Weight(M𝑖 𝑗 ) modified as above. In the example
in Figure 2, the proportion of themost similar pair is modified to (1−
0.25)+(1−0.5)+(1−0.125) = 2.125. This modifiedmaximumweight
is approximately 71% of the sum of the weights of all pairs, which is
higher than 53% before its modification. In the following experiment
section, we validate this design and empirically demonstrate how
the proportion changes as 𝑛𝑘 increases.

3 Experiment
3.1 Setup
3.1.1 Datasets. We select four publicly available recommendation
benchmark datasets for the experiments, including Yelp2018 [11]
and Amazon-Books [43] (relatively sparse), as well as MovieLens-
1M [7] andAnime [4] (relatively dense). The statistics of the datasets
are shown in Table 3. For all datasets, we convert explicit user-to-
item ratings to binary labels through thresholding. We randomly
split datasets with a ratio of 0.8/0.1/0.1 for training, validation, and
testing, respectively.

3.1.2 Baselines. We select sevenmodels as our baselines: NFM [11],
DeepFM [8], xDeepFM [21], DCN [38], DCNV2 [39], AutoInt [32],
and EulerNet [34]. NFM [11], DeepFM [8], and xDeepFM [21] com-
bine the advantages of Factorization Machines [29] and deep neu-
ral networks to capture complex non-linear and high-order fea-
ture interactions. DCN [38, 39] learns explicit and implicit features
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Table 2: Ranking performance comparison by applying our approach to the baselines. ‘Original’ and ‘+Ours’ represent perfor-
mance of the original models and those applied with our strategy respectively. ‘%Δ’ denotes the relative performance change.

NDCG@10 NDCG@20 Recall@10 Recall@20

Model Original +Ours %Δ Original +Ours %Δ Original +Ours %Δ Original +Ours %Δ

ML-1M

NFM 9.42 9.44 0.21 10.88 10.96 0.74 8.97 9.03 0.69 14.26 14.50 1.67
DeepFM 10.17 10.41 2.32 11.70 12.02 2.72 9.61 9.98 3.87 15.08 15.68 3.98
xDeepFM 8.08 8.17 1.06 9.65 9.82 1.72 8.04 8.19 1.92 13.13 13.52 3.00
DCN 10.07 11.19 11.08 11.58 12.73 9.98 9.47 10.17 7.33 14.97 16.11 7.64
DCNV2 10.76 10.91 1.39 12.26 12.52 2.10 10.02 10.26 2.39 15.55 16.12 3.69
AutoInt 8.72 9.18 5.23 10.32 10.82 4.84 8.66 9.19 6.07 13.96 14.60 4.60
EulerNet 8.91 9.11 2.34 10.51 10.96 4.32 8.73 9.24 5.86 14.08 14.83 5.28

Yelp2018

NFM 2.92 3.35 14.58 4.58 5.10 11.35 5.28 6.06 14.77 11.23 12.30 9.58
DeepFM 1.95 2.18 11.78 3.52 3.83 8.63 3.90 4.33 10.86 9.66 10.32 6.86
xDeepFM 2.53 2.76 9.34 4.12 4.42 7.28 4.68 5.11 9.19 10.45 11.09 6.11
DCN 2.20 2.46 11.73 3.75 4.12 10.04 4.25 4.75 11.78 9.87 10.75 8.93
DCNV2 2.07 2.30 10.81 3.63 3.94 8.42 4.06 4.49 10.55 9.77 10.47 7.16
AutoInt 1.98 2.20 11.20 3.53 3.82 8.33 3.92 4.32 10.37 9.57 10.21 6.64
EulerNet 3.39 3.68 8.74 5.08 5.44 7.09 5.84 6.34 8.59 11.90 12.61 5.93

Amazon-Books

NFM 2.67 3.04 13.69 4.06 4.47 10.25 4.52 5.09 12.42 9.10 9.81 7.85
DeepFM 2.40 2.65 10.69 3.69 4.01 8.50 4.00 4.43 10.86 8.41 9.01 7.04
xDeepFM 2.24 2.46 9.74 3.46 3.75 8.32 3.69 4.08 10.62 7.88 8.46 7.34
DCN 1.91 2.20 15.15 3.13 3.52 12.40 3.28 3.81 16.23 7.53 8.27 9.94
DCNV2 2.42 2.68 10.65 3.76 4.09 8.72 4.16 4.60 10.52 8.67 9.30 7.31
AutoInt 2.35 2.57 9.63 3.65 3.94 7.89 3.93 4.30 9.47 8.36 8.92 6.75
EulerNet 2.46 2.64 7.57 3.68 3.91 6.37 3.93 4.30 9.30 8.08 8.57 6.14

Anime

NFM 14.74 14.68 -0.37 17.60 17.69 0.55 17.33 17.71 2.19 26.11 26.92 3.10
DeepFM 14.22 14.58 2.56 16.55 17.59 6.30 17.09 17.70 3.61 26.02 26.85 3.20
xDeepFM 15.09 15.08 -0.01 18.19 18.30 0.60 18.12 18.36 1.34 27.50 28.11 2.23
DCN 13.90 14.17 1.94 16.41 17.03 3.77 15.73 16.50 4.90 23.76 25.26 6.32
DCNV2 14.98 15.30 2.10 17.66 18.12 2.62 17.08 17.73 3.79 25.65 26.72 4.19
AutoInt 12.32 13.27 7.66 15.00 16.05 7.04 14.59 15.99 9.54 22.75 24.44 7.45
EulerNet 12.91 13.42 3.95 15.39 16.03 4.20 14.86 15.73 5.83 22.74 23.96 5.37

through a cross-network and a deep neural network, respectively.
AutoInt [32] utilizes self-attentive neural networks to learn more
effective feature interactions. EulerNet [34] learns high-order in-
teraction features by transforming their exponential powers into
linear combinations of the modulus and phase of complex features.

3.1.3 Training. We employ the AdamW optimizer for optimization
and adopt binary cross-entropy as the loss function to train the
models on the training set. We run a fixed number of grid searches
over all the baseline models’ provided hyper-parameters for their
best AUC performance on the validation set for the CTR prediction
task. With the best hyper-parameters, we train the models under
five random seeds and save all the checkpoints. The training and
inference processes are conducted on an NVIDIA RTX 3090 GPU

Table 3: The statistics of four benchmark datasets.

Dataset #User #Item #Interaction Sparsity

ML-1M 6,041 3,261 998,539 0.9493
Yelp 77,278 45,639 2,103,896 0.9994
AmzBook 68,498 65,549 2,954,716 0.9993
Anime 55,119 7,364 6,270,078 0.9846

with 24 GB of memory, and the user-user and item-item similarity
matrices are pre-computed on a standard commercial CPU with 128
GB of RAM. We adopt Recbole [49] to conduct all the experiments.
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Figure 3: The relative performance is averaged over the four
benchmark datasets and is scaled based on the originalmodel
performance. The overall time is the summation of training
and inference time. Original denotes the original method,
Ours denotes methods applied with our strategy, and Graph
denotes the naive framework mentioned in Sec. 2.2.

3.1.4 Evaluation. For each baseline model, we evaluate our strat-
egy with the inference results from the previously trained and saved
model checkpoints. We tune the number of candidates 𝑛𝑘 with the
same amount of grid-searches and re-evaluate the model perfor-
mance. The ranking ability is evaluated by two ranking-based met-
rics, NDCG@K and Recall@K, both of which assign higher scores
to models with stronger ranking abilities. All reported results are
averaged over the results under the five random seeds.

3.2 Ranking Performance Improvement
We evaluate the baseline models’ ranking performance on the four
benchmark datasets, and denote the results under the Original
columns in Table 2. We apply our strategy to each of the baseline
models, and report the re-evaluated ranking performance under
the +Ours columns in Table 2. The relative performance change
under the %ΔΔΔ columns is wrt the original method.

From the table, we observe that: (i) our strategy stably improves
the performance over the original model, and only demonstrates a
slight performance downgrade in some rare cases (i.e., NFM and
xDeepFM in Anime). These results validate that our strategy is
generally effective in improving ranking performance across vari-
ous ranking models and benchmark datasets. (ii) The relative im-
provements are relatively evident in sparse datasets (i.e., Yelp2018,
Amazon-Books) than dense datasets (i.e., ML-1M, Anime). This is
because, in sparse datasets where the number of interactions associ-
ated with each node is relatively small, the node embeddings receive
fewer collaborative filtering signals from their neighbors during
training. Therefore, at test time, our strategy can compensate for
insufficient training of the user/item embeddings with the injected
graph knowledge. In contrast, user/item embeddings trained in
dense datasets receive more training signals from a larger number
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Figure 4: The ranking performance of DCN to varied number
of considered neighbors 𝑛𝑘 in our strategy.

of neighbors, resulting in less space for improvement at testing
time by strategy.

3.3 Time Efficiency
To demonstrate the efficiency of our strategy, we again take DCN as
a typical rankingmodel to compare the averaged training, inference,
and overall time in the three settings: DCN, DCN enhanced with our
strategy, and the naive graph-enhanced DCN. The results shown
in Figure 3 indicate that applying our strategy to DCN achieves a
performance comparable to that of the naive graph-enhanced DCN,
with only less than 2% of extra time overall. Applying our strategy
to a well-trained CTRmethod does not introduce additional training
time, and only quadratically increases the inference time wrt𝑛𝑘 . For
each dataset, the most relevant 𝑛𝑘 users and items neighbors can be
precomputed, making the corresponding computational overhead
one-off relative to a dataset.

3.4 Effect of 𝑛𝑘 to our strategy
To analyze how the number of relative user/item candidates 𝑛𝑘
in our strategy affects the performance, we apply our strategy to
DCN with varied 𝑛𝑘 in {1, 2, 5, 10} to compare the performance.
The results are shown in Figure 4. From the figure, we see that
our strategy, when applied to dense graphs such as ML-1M and
Anime, demonstrates improved performance with smaller 𝑛𝑘 ’s. In
contrast, on sparse graphs such as Yelp2018 and Amazon-books,
our strategy yields better results with larger 𝑛𝑘 ’s. This is because
the value of 𝑛𝑘 controls the range of the neighborhood considered
for graph knowledge extraction. When 𝑛𝑘 is small, the extracted
graph knowledge is sufficient to improve CTR methods trained on
dense graphs but insufficient for those trained on sparse graphs.

We further analyze how 𝑛𝑘 affects the resultant contribution
proportion of the most similar user-item pair in our strategy. Specif-
ically, we apply our strategy to DCN with varied 𝑛𝑘 in {2, 5, 10},
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Figure 5: Contribution proportion distribution for the most
similar user-item pair, where most common proportion val-
ues are highlighted and denoted above.

and depict the contribution proportion distribution of the most
similar user-item pair in Figure 5. From the figure, we see that as
𝑛𝑘 increases (i) the contribution proportion for the most similar
user-item pair increases, and (ii) the distribution is more concen-
trated (i.e., it spans fewer values). Intuitively, the two phenomena
suggest that within a close neighborhood (i.e., 𝑛𝑘 is small), our
strategy adjusts the contribution proportion of the most similar
pair in a wider range with relatively smaller numerical values. Con-
versely, within an extensive neighborhood (i.e., 𝑛𝑘 is large), our
strategy conservatively adjusts the proportions in a tighter range
with relatively larger values.

4 Related Work
A real-world RecSys consists of roughly two stages: candidate re-
trieval and item ranking. In the retrieval stage, collaborative filtering
(CF) is commonly utilized, whereas in the ranking stage where rich
contextual information is additionally incorporated, click-through
rate (CTR) models are widely adopted in this stage.

Collaborative Filtering. As a prevalent technique that is widely
employed in modern RecSys, CF makes recommendations based on
the idea that similar users tend to have similar preferences [41]. Tra-
ditional CF methods aim to reconstruct user-item interactions with
parameterized user and item embeddings. They model the recon-
struction as a matrix factorization process with the user and item
ID embeddings [18, 30, 47]. Some other methods maintain the ID
embeddings and adopt neural networks to enhance the interaction
modeling in between [11, 33]. Apart from improving interaction
modeling, other recent works focus on refining other aspects, such

as the objectives and learning paradigms for performance enhance-
ment [3, 20, 37, 46].

Graph-based Collaborative Filtering. Apart from signals from
direct interactions, high-order CF signals in the user-item bipartite
graph are crucial for personalized recommendations as well. These
signals can be captured by the graph convolution operation in
most graph neural networks (GNNs) [9, 17, 36]. Prior efforts adopt
GCN [17] to the user-item interaction graph [1, 40, 44] to capture CF
signals in the neighborhood. Later on, LightGCN [12] simplifies the
graph convolution in GCN by preserving only linear neighborhood
aggregation.

In addition to improving the structure of GNNs, recent works [2,
22, 24, 43, 45] enforce contrastive learning constraints in training
the models for improved performance. For example, SGL [43] per-
forms classical graph augmentation to the original bipartite graph
to reinforce node representation learning via self-discrimination.
SimGCL [45] refines the graph augmentation strategy in SGL with
the perturbation of uniform noises and contrasts between the two
perturbed graph views. NCL [22] explicitly incorporates poten-
tial neighbors into constructing contrastive pairs and defines a
structure-contrastive objective to optimize.

Click-through Rate Prediction. As a widely adopted task for
training models in the ranking stage, CTR prediction is defined
as predicting the interaction likelihood between a user and an
item given the user ID, item ID, and optional context features as
input. The incorporated contextual information includes user de-
mographic features, item description, interaction timestamps, etc.
These features additionally consider the variability of user pref-
erences for items across different contexts in which they interact
with the system.

Early works in CTR seek efficient interactions between the
interaction and the contextual information. They preserve low-
order feature interactions through the prominent Factorization
Machines [29] and seek high-order feature interactions through
deep neural networks (DNNs) [8, 11, 21]. Later works modify the
layer design within a deep neural network to automatically learn
bounded-degree feature interactions [38, 39].

Some recent studies project the features to other predefined
hyperspaces [32, 34] for more efficient and complex feature inter-
actions, and the other [28] improves the model robustness from the
supervision perspective.

Our strategy follows the established paradigm of CTR ranking
methods. Unlike traditional graph-based CF approaches that inte-
grate graph structure during training, our method leverages graph
knowledge exclusively at inference time. This utilization of graph
connectivity avoids the overhead of graph-based training while still
benefiting from structural signals, making it lightweight and easily
integrable into existing pipelines.

5 Conclusion
In this work, we investigate how to efficiently leverage graphs to
improve the performance of models in the ranking stage of a RecSys,
where rich contextual information is utilized.
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We first demonstrate a naive graph-enhanced ranking frame-
work, where graph knowledge is incorporated in the encoder of
a ranking method via the message-passing operation. While this
framework is empirically effective in improving ranking perfor-
mance, the substantial computational overheads entailed by train-
ing with a graph encoder render this framework prohibitively ex-
pensive for real-world applications.

In light of this, we propose a non-parametric graph convolution
strategy for ranking methods that utilizes graphs only once at test
time to improve their ranking abilities. Our strategy can be used as
a plug-and-play module, and can be easily employed with various
ranking methods with little to no additional computational cost.

We conduct comprehensive experiments across four benchmark
datasets with various densities to demonstrate that our strategy
brings noticeable ranking performance improvements (i.e., 8.1% on
average) during testing time with little to no additional computa-
tional overheads (i.e., 0.5% on average).
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