
Symbolic Prompt Tuning
Completes the App Promotion Graph

Zhongyu Ouyang1, Chunhui Zhang2, Shifu Hou1, Shang Ma1, Chaoran Chen1,
Toby Li1, Xusheng Xiao3, Chuxu Zhang4, Yanfang Ye1 �

1 University of Notre Dame, USA
{zouyang2,shou,sma5,cchen25,toby.j.li,yye7}@nd.edu

2 Dartmouth College, USA chunhui.zhang.gr@dartmouth.edu
3 Arizona State University, USA xusheng.xiao@asu.edu
4 Brandeis University, USA chuxuzhang@brandeis.edu

Abstract. Recent mobile applications (i.e., apps) have been extensively
implanted with paid advertisements that promote other mobile apps, in-
cluding malware that raises alarming concerns in cybersecurity. Excavat-
ing the app promotion patterns in the app-promoting ecosystem allows
for early interceptions of malware installment, and hence has gained more
attention in recent research. However, related data in the app-promoting
ecosystem such as app developers and categories is often scarce, espe-
cially when the data is collected from a single data source. The scarce
data is insufficient in training effective deep and complex models for app
promotion pattern mining, and targeting the data scarcity problem is
therefore the key to advancing research in app promotion pattern min-
ing. Therefore, we aim to complete data in the app-promoting ecosystem
to pave the way for app-promoting pattern mining. We present Sym-
Prompt, a language model-based framework that leverages the symbolic
prompts to complete the missing data in the app-promoting ecosystem.
The symbolic prompts are tokens that provide extra contextual informa-
tion that assists the model in completing the missing data. We devise
two sets of symbolic prompts containing contextual information from the
perspectives of data structure and data semantics to assist the model pre-
diction. Through extensive experiments, we demonstrate SymPrompt’s
effectiveness in completing the missing in the app-promoting ecosystem.
Code: https://github.com/zyouyang/SymPrompt

1 Introduction

Mobile applications (i.e., apps) are extensively implanted with paid advertise-
ments (i.e., ads) as a means of product promotion. It has been reported that over
57% of all apps in Google Play contain ad libraries, and this percentage reaches
up to two-thirds within popular apps [24]. Among these ads, the app-promotion
ads are widely used by Android app developers to promote other mobile apps.
These app-promotion ads play a crucial role in helping users discover new apps,
demonstrated by the research showing that 33% of users discover new apps

https://github.com/zyouyang/SymPrompt

2 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

Passport Photo Maker Flood-It!
Benign

Greyware
Photo Editor

Malware
develop

Polish English
Translation

Thai Chinese
Translation

CallApp

develop

promotepromote

Developer

(a). An example of malicious app promotion chain. (b). An app promotion chain with heterogeneous actors.

promotepromote

Fig. 1. App promotion chain examples in the app-promoting ecosystem.

through ads in other apps [19]. However, concerns arise regarding the trustful-
ness of the apps promoted through these ads, given the competitive nature of
the industry and the potential for web technology with risks of invading personal
privacy [18,13].

To prevent users from being promoted to malicious apps, researchers start
to mine promoting patterns in the app-promoting ecosystem in order to provide
early interventions for suspicious app installments. Some of the previous stud-
ies focus on analyzing the behaviors of ad libraries within the app promotion
ecosystem [8,12], and some others analyze app promotion behaviors based solely
on ways the apps are presented (web view or image view) [11,6]. These studies
either primarily examine the behaviors of ad libraries, or analyze app promotion
behaviors based solely on the app representations (web views or image views).
Therefore, they pay too little attention to app propagation in terms of how
massive individuals exploit the app promotion ecosystem and possess limited
abilities to capture the interaction patterns with other apps in the promotion
network. For instance, Figure 1(a) demonstrates an app promotion chain where
a popular benign app “Passport Photo Maker” promotes a greyware app “Photo
Editor”, which in turn promotes malware “Flood-It!”, a strategy game capable of
scanning the local network and stealing sensitive phone information. Promotion
chains among apps, as exampled above, hence cannot be detected and exploited
by previous studies for app promoting behavior analysis.

Furthermore, prior studies lack a comprehensive understanding of the app-
promoting ecosystem, which involves multiple heterogeneous actors beyond apps,
such as app markets, security vendors, and developers. These actors collectively
contribute to the promotion of specific apps. For example, Figure 1(b) provides
a promotion chain path that could explain why an online messaging app, “Pol-
ish English Translation”, promotes “CallApp”. The underlying behaviors indicate
that “Polish English Translation” shares the same developer as another trans-
lation app “Thai Chinese Translation”, which has been observed to promote
“CallApp”. Hence, a more holistic approach that learns the intrinsic connections
among these various entities is necessary to deeply understand the complexities
of the app-promoting ecosystem, as well as its implications for society and on-
line commerce. Such an in-depth understanding of the app-promoting ecosystem

Symbolic Prompt Tuning 3

has the potential for various positive extensions, such as improving trust in app
recommender systems and detecting malicious apps.

A natural way to holistically exploit the complex connections among the
heterogeneous actors is to model the collected app-promoting data as a hetero-
geneous graph, and directly analyze the graph for app promotion pattern mining.
Current graph representation learning [9,37,26,7,14,33,36] have shown their ef-
fectiveness in various domains such as recommender systems [16], node/graph
classfication [5,17,22,32], knowledge engieering [20,34,28,10,27], and graph com-
pletion [29,15]. They are designed to capture high-order connectivity relation-
ships between multiple entities. However, a huge obstacle blocking the exploita-
tion of the app-promoting data with heterogeneous actors is the data scarcity
problem. Around 15% of our collected app-promoting data in Google Play
contains missing entries such as app developers and app categories. Also, data
scarcity is one of the major challenges in training deep and complex graph learn-
ing models with exceptional performance, including graph learning methods [35].
Therefore, targeting the data scarcity problem is the key to advancing studies
in app promotion pattern mining.

To address the above limitations, we first model the app-promoting data as
a relational heterogeneous graph and center around the graph completion task.
Specifically, each heterogeneous actor (e.g., an app developer, a visited URL) is
abstracted to an entity in the graph, and each interaction between the actors
(e.g., a developer develops an app, an app belongs to a category) is abstracted
to a relation in the graph. Then, we center around the heterogeneous graph
completion task, where given the observed graph and a query containing an
entity and a relation type (e.g., a query contains the entity developer1, and
the relation type developer-develop-app), we aim to predict un-observed true
positive entities that answer the query (e.g, the apps that are developed by the
developer in the query).

Nevertheless, learning to complete a graph collected from the wild in our
focused app promotion network is non-trivial. Existing methods for graph com-
pletion are either too simplistic for modeling the highly complex networks with
scarce relations and entities [1,21,30], or heavily rely on rich semantic informa-
tion to train a heavy model with massive parameters [25,15,31], which contradicts
the data scarcity issue in app-promoting data collected from the wild. To target
the limitations of existing techniques, we propose a framework that leverages
a pre-trained language model (e.g., BERT) to model the complex relation, and
incorporate two different symbolic prompts to compensate for the lack of seman-
tic information closely related to the query. We first derived symbolic prompts
from existing embedding-based methods like DistMult [30] to provide contextual
information from the geometrical embeddings, and then generate the other set
of symbolic prompts based on the correlation between the queried relation and
metapaths. The two sets of symbolic prompts are concatenated with the query
tokens to construct the input tokens to our framework. Our contributions are:

– We propose a novel framework that addresses the challenge of modeling
complex connectivity patterns in the app promotion graph by leveraging the

4 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

pre-trained language model. Our approach additionally incorporates two sets
of symbolic prompts for further learning guidance.

– We collect a real-world dataset in the app promotion ecosystem, and demon-
strate the effectiveness of our approach through extensive experiments. The
results show that our approach outperforms existing techniques in terms of
both accuracy and generalities.

– We provide a deeper understanding of the app promotion ecosystem, its
complexities, and its implications for societal trust. Our work sheds light on
the potential applications of heterogeneous graph completion methods and
pre-trained language models in detecting malicious app promotions.

2 Background and Related Work

2.1 Definitions

Definition 1 (Heterogeneous Graph). A heterogeneous graph (HG) G =
(V, E ,X) consists of a entity set V, an relation set E, and the optional entity
and relation features: X = (XV ,XE). The types of entities and relations are
mapped through the type mapping functions ϕ : V → A and ψ : E → R, where
A and R denotes the entity and relation type set respectively. Each relation is
directional, and is represented as a triple (h, r, t) ∈ E where h, t ∈ V, r ∈ R. For
a heterogeneous graph, there exists the constrain |A|+ |R| > 2.

Definition 2 (Metapath). In a heterogeneous graph, a metapath is a prede-
fined sequence of entity types and relation types that capture the semantic rela-
tionships between entities. Formally, a metapath P is denoted as e1

r1−→ e2
r2−→

...eL
rL−→ eL+1, where ri ∈ R, ei ∈ A, r = r1 · r2 · ... · rL is the composite relation

between entity type e1 and eL+1, and L is the length of the metapath.

Definition 3 (Heterogeneous Graph Completion). For a query (h, r) where
h ∈ V and r ∈ R, the heterogeneous graph completion (HGC) task refers to dis-
covering answers T ⊂ V, such that for all t ∈ T , (h, r, t) ∈ E in reality.

Table 1. Numbers and types for entities.

Ent.Type Signature VT Engine Category Developer URL

Ent. # 185 65 36 3139 18870

Ent. Type Manifest Benign Greyware Malware Total

Ent. # 10269 3961 1143 363 38031

Symbolic Prompt Tuning 5

2.2 Collected App Promotion Dataset

To exploit the complex relational patterns in the app promotion ecosystem, we
collect data from Google Play and construct the app promotion heterogeneous
graph (APHG) for the completion task.

Entities. The APHG encapsulates various entities derived from the follow-
ing attributes: application, developer, application category, manifest, VirusTo-
tal Engine, digital signature, and URL. Given the unique promotional behaviors
demonstrated by benign, grey, and malicious apps, we further classify the appli-
cation entity into three discrete classes - benign, grey, and malicious, and extend
the aggregated count of entity types to nine. We provide the statistics of the
entities in the APHG in Tab. 1. In total, there are nine types of entities.

!!"# !$%&!'(!)(… !'$!*$…

Ins. Prm"'(C)(… "'$ C*$…

Embedding-based
Prompts

Metapath-based
Prompts Query

$!"# $$%&$'($)(… $'$ $*$…

Aggregator + Pred. Head

HGC
Instagram

<Promote> ?
Unknown APP

include

detect

belong

involve

develop

access

use

own

promote

Signature

VT Engine

Manifest

URL

DeveloperCategory

App

Signature
185

Manifest

10269

URL

18870

VirusTotal
65

Category

36

Developer

3139

Benign 3961 / Grey 1143 / Mal 363

Pre-trained Embedding-based Tokenizer

B E R T

Fig. 2. The schema of the APHG.

Relations. The relations of interests are
demonstrated in Fig. 2. In total, we con-
sider twenty-nine classes of relations by
further categorizing the applications into
benign, greyware, and malware. Note that
all the relations are directional. Despite the
potential to gather additional information,
neither the entities nor the relations are as-
sociated with any features. Therefore, our
APHG is denoted as G = (V, E). We pro-
vide detailed descriptions of the relations
in the supplementary materials.

2.3 APHG Completion Task

The APHG completion task refers to an-
swering a query that contains an entity type and a relation type based
on the observed APHG. For example, for a query q = (developer1,
developer-develop-app), the model is expected to output the possible apps
that developer1 develops. We additionally note that the queried relations only
associate with one of the constructed directional relations, excluding the reverse
relations. For example, we query (developer1, developer-develop-app), rather
than (app1, app-developed-developer).

2.4 Related Work

Embedding-based Methods. Knowledge graph embedding (KGE) methods
employ geometric operations in the vector space to capture the underlying se-
mantics of the graph, such as translation [1], bilinear transformation [30], ro-
tation [21]. Other methods design embeddings from different perspectives. For

6 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

DistMult =

Mtp.-based

Emb.-based
Pre-trained Embedding-based Tokenizer

Pre-trained BERT Encoder

Random Permutation

Aggregator + Prediction Head

HGC

… …

Query: ?

… …

App

App

Developer

URLdevelop use

access

access

URL

Queried Relation TokenQueried Query Token Mtp.-based Sym. Prompt Token Emb.-based Sym. Prompt Token

access

Fig. 3. Overall framework: the metapath-based and embedding-based symbolic
prompts are pre-computed, and are concatenated with the queried entity and rela-
tion to construct the symbolic inputs.

instance, CompLEX [23] leverages compositionality to model the complex rela-
tionships between entities. ConvE [3] utilizes multi-layer convolutional networks
on the 2D grid abstracted from the knowledge graph to encode local dependen-
cies. Although conceptually straightforward, these methods encode each entity
and relation’s embedded information through a simple vector. The inherent sim-
plicity of embedding-based methods can present challenges in scenarios involving
complex reasoning and scarcity of information.

Transformer-based Methods. Taking account of the relatively weak expres-
sion power of the embedding-based methods, several recent works utilize trans-
formers for additional enhanced contextual information encoding. Some works
take the triple as the input and perform tasks such as triple classification and link
prediction. For example, KG-BERT [31] treats triples as textual sequences to in-
ject semantic information and exploits pre-trained BERT to learn context-aware
embeddings. PKGC [15] leverages the entity’s semantic information and con-
verts them into natural prompt sentences to address the closed-world assumption
(CWA) and incoherent issue. However, the above methods require the scoring of
all possible triples in inference, therefore introducing some unnecessary calcula-
tion overheads. On the other hand, some other works are designed to directly out-
put the candidate entities. For example, StAR [25] designs a structure-aware and
structure-augmented framework for efficient KGC inference. HittER [2] extracts
context neighbors for the source entity and introduces the additional masked
entity prediction task for balanced contextualization. GenKGC [29] introduces
relation-aware demonstration and entity-ware hierarchical decoding for better
representation learning. Despite the progress made so far, we notice some im-
plementation gaps in applying the above methods to a knowledge graph and
a heterogenous graph: First, entities in a knowledge graph naturally entitle se-
mantic information, while this is not always true for a heterogeneous graph;
Second, the above methods left out the entity/node type information provided
in a heterogeneous graph, therefore leaving considerable space for performance
improvement. In contrast, our model is designed to not only straightly output

Symbolic Prompt Tuning 7

the candidate entities, which eliminates the calculation overhead but also fully
utilize the entity and relation type information for better prompting.

3 SymPrompt

Our SymPrompt approach leverages the pre-trained BERT [4] as a language
model to process the tokenized inputs. The reasons are tri-folded: (i) BERT
reduces the computational overhead by directly outputing the probability dis-
tribution over the entities, where the corresponding probabilities represent the
ranking scores. In comparison, geometrical-based KGE methods require further
similarity calculation to obtain the ranking scores; (ii) The bidirectional atten-
tion learning mechanism in BERT allows for complex input sequence processing,
which is essential in aligning the query tokens with the symbolic prompt tokens
to the completion task; (iii) BERT accepts flexible length of the input tokens,
which include the query tokens and the symbolic prompt tokens. It supports var-
ious numbers of symbolic prompts. This feature further enhances the practical
applicability of our framework. Subsequently, the encoded tokens are aggregated
and decoded by a two-layer MLP to output the final result. The overall frame-
work is depicted in Fig. 3. The input tokens are composed of three parts, as
demonstrated in Fig. 3: (i) the query tokens, including the queried entity and
relation token; (ii) the symbolic prompts generated based on embedding-based
methods, such as DistMult; (iii) the symbolic prompts generated based on the
correlation between the metapaths and the queried relation. In the following
content, we provide details regarding these symbolic prompts.

3.1 Embedding-based Symbolic Prompts

Prior embedding-based models have demonstrated remarkable performance on
various benchmark datasets. These models possess inherent simplicity that ren-
ders them proficient tokenizers, effectively mapping entity and relation tokens to
a shared semantic space. In this paper, we select DistMult [30] as the pre-trained
embedding-based method to tokenize the entities and relations. Note that this
is a designer’s choice and can be substituted with any other methods that fit
our framework. Let n be the size of the embedding-based symbolic prompts,
which are defined as the top-n predicted entities by the pre-trained embedding-
based methods according to the predicted scores. For example, when considering
the query (app1, app-access-URL), the embedding-based symbolic prompts are
represented as Se = [url1, url2, ..., urln], where Se includes the top-n URLs
predicted by DistMult that may be accessed by app1.

3.2 Metapath-based Symbolic Prompts

Previous embedding-based methods rely on geometric operations to model rela-
tions among entities, resulting in symbolic prompts that share similarities from

8 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

a geometric perspective. Meanwhile, semantic relational information among en-
tities can also be extracted from the metapaths of the HG. Therefore, we ad-
ditionally provide the model with metapath-based symbolic prompts from the
semantic perspective, based on the assumption that relations are semantically
correlated with metapaths to different extents. We first introduce the measure of
the semantic correlation between a metapath and a relation and then illustrate
how to utilize the correlation to create the metapath-based symbolic prompts.

Relation-Metapath Correlation We first define the functions src(·) and
dst(·) as the source and destination entity type mapping functions for a rela-
tion r respectively. We make the following definitions:

Definition 4 (r-valid Metapath). A metapath p = e1
r1−→ e2

r2−→ ...eL
rL−→

eL+1 is r-valid if and only if src(r) = e1 and dst(r) = eL+1.

Definition 5 (p-Hit). For a triple (h, r, t), where r is the relation, h and t are
the source and destination entity respectively, we say the triple is p-Hit if and
only if there exists at least one path from h to t such that this path is an instance
of the metapath p.

Definition 6 (p-Hit Ratio). For a p-Hit triple (h, r, t), the corresponding p-hit
ratio is defined as the ratio of t among all the entities reached by following the
metapath p starting from entity h; if t cannot be reached, the p-hit ratio is zero.

Definition 7 (r-p Ratio). For a relation r, a r-valid metapth p, and triples
Er = {(h, r, t) ∈ E}, the corresponding r-p ratio is defined as the averaged p-Hit
Ratio in Er.

Example. For simplicity, we abbreviate relation benign-access-URL as access,
developer-develop-app as develop, and developer-use-URL as use. For re-
lation r = access, one of the metapaths p = benign

develop←−−−−− developer use−−→ URL
is an r-valid metapath. For the triple (benign1, access, url1), if there exists
a path "benign1

develop←−−−−− developer1
use−−→ url1", then we say the triple is p-Hit.

Furthermore, if starting from benign1 and following p reaches to a set of nodes
T p
h where url1 ∈ T p

h , and T r
h ∈ T

p
h represent the entities that are connected with

benign1 with relation r, then the p-Hit Ratio is 1/|(T p
h \ T r

h |+ 1). Since the r-p
Ratio is defined as the probability of finding the answer t by following metapath
p starting from the entity h, we utilize it as the correlation indicator and select
top-k metapaths that are most correlated with relation r, denoted as Pr.

Entity Candidate Refining Even if metapaths in Pr are selected based on
the correlation with the relation, the reachable entities may still contain noise
regarding the queried relation, especially when the path passes a high-degree
entity, which results in a significant size of the entity candidates with little and
even noisy information. To further refine the entity candidate set, we first cat-
egorize the metapaths p ∈ Pr as one leading to either a large or small size of

Symbolic Prompt Tuning 9

candidates. For those who lead to small-sized candidates, we union the can-
didates, and for large-sized candidates, we intersect them. The rationale is as
follows: if a relation is weakly related to a metapath, then the candidate size
is large and we rely on the intersect operation to filter out the noise; if some
relations are broadly related to more than one metapath, then the candidate size
is small and the union operation gathers all the possible candidates. To further
reduce the size of the entity candidates, we lastly utilize an embedding-based
method to select the top-n entities among the candidates as the final refined
metapath-based symbolic prompts.

3.3 Combined Input Tokens

The final input of a query (h, r) is defined as the concatenation of the embedding-
based symbolic prompt tokens, the metapath-based symbolic prompts tokens, as
well as the query tokens. Prior to the language model, we randomly permute the
input tokens. This step is essential in forcing the language model to learn the
intrinsic connection between the query and the answer, rather than consulting
the positional information as the shortcut. We validate the necessity of this
step in the following experiments. Subsequently, we utilize an embedding-based
method as the tokenizer (rather than the BERT’s original tokenizer) to project
the tokens into the embedding space for encoding. Finally, we adopt the binary
cross entropy loss to train the language model for the HGC task.

4 Experiment

4.1 Setup

For baseline models, we carefully select DistMult [30], ComplEX [23], ConvE [3],
HittER [2], and LTE [38] as the baselines, for they can be easily adapted to
our HGC task. We evaluate the models with two key metrics, mean reciprocal
rank (MRR) and Hits@K, where MRR provides an absolute measure of ranking
performance via the average reciprocal rank of the correct candidates for each
test example, and Hits@K measures the proportion of test examples for which
the correct candidate is ranked within the top-K predicted candidates. Higher
values of MRR and Hits@K indicate better performance in accurately ranking
the correct candidates for the graph completion task. We select a pre-trained
DistMult [30] as the tokenizer to tokenize the entity and relation tokens and
utilize a pre-trained ComplEX [23] to refine the symbolic prompts as described
in § 3.2. Note that the above choices are a matter of preference, and can be
substituted with other embedding-based methods such as TransE [1].

4.2 Performance on App Promotion HGC

The performance comparison with the baselines is shown in Tab. 2 (based on the
three types of input token components, i.e., the query tokens, the embedding-
based and the metapath-based symbolic prompt tokens as well as the adoption

10 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

Table 2. Performance comparison with the baseline models on the app promotion
dataset. Best results are bolded, and runner-ups are underlined.

Model Hit@1 Hit@3 Hit@5 Hit@10 MRR

DisMult [30] .6040 .7280 .7550 .8350 .6840
ComplEX [23] .6680 .7780 .8180 .8650 .7370
ConvE [3] .6400 .7460 .7950 .8490 .7110
HittER [2] .5505 .6758 .7227 .7862 .6312
ConvE-LTE [38] .6350 .7444 .7918 .8506 .6602
Distmult-LTE [38] .6381 .7651 .8083 .8677 .7174

Base .7246 .7610 .7729 .7895 .7481
Emb.-based Only .7786 .8272 .8447 .8672 .8096
Mtp.-based Only .4567 .4740 .4843 .5082 .4795
Ours w/o. Rand. Perm. .7383 .7817 .7940 .8118 .7653
Ours .8393 .8710 .8802 .8922 .8587

of token random permutation/shuffle, we consider five settings under our frame-
work, as shown in Tab. 3). The results in Tab. 2 demonstrate that our model
outperforms the other baselines by a significant margin. This is because while
our model utilizes DistMult as the tokenizer to project the tokens in the em-
bedding space, it does not merely rely on the simple multiplication operation
as in DistMult for query answering; instead, the attention mechanism in the
deep layers of the language model captures the complex interaction between the
query and the symbolic prompt tokens. We also observe that as the value of
K in Hit@K increases, the performance gap between our model and the base-
lines gradually diminishes. This phenomenon could be explained by the two-step
inference process followed by our model: (i) the model processes the symbolic
prompts and attempts to identify the answers out of the input tokens. If the
correct answer exists within the symbolic prompts, the model confidently out-
puts it with a high probability, leading to higher hit ratios with a small K. This
answer identification step is relatively straightforward; (ii) if the answer is not
included in the symbolic prompts, the model instead attempts to generate the
answer token. We term the second step the answer generation step, as it re-
quires the model to deduce the interactive patterns among the input tokens wrt
the query, and is, therefore, more challenging compared with the first one. The
two-step inference process reveals that our model excels at both answer identifi-
cation and generation. Additionally, the Hit@1 in all settings but the Mtp. Only
is significantly improved upon DistMult, suggesting our framework’s effective
combination of the answer identification and generation steps for query answer-
ing. The downgrade Hit@1 in Mtp. Only results from the tilted focus to the
more challenging answer generation step, for the massive noise in the symbolic
prompts. We detailedly analyze the two-step inference process in § 4.3.

4.3 Component Analysis

Symbolic Prompt Tuning 11

0.0

0.2

0.4

0.6

0.8
Hit@1 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@3 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@5 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@10 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

MRR w/ Rand. Perm.

0.0

0.2

0.4

0.6

Hit@1 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
Hit@3 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
Hit@5 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@10 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
MRR w/o Rand. Perm.

Base Emb.-Only Mtp.-Only Rand. Prompt Ours Best Baseline

Fig. 4. Results of all component-differed variant models. The model variants in the
first row randomly permute the input tokens, and the ones in the second row do not.
The input tokens are constructed as indicated by the legend.

Table 3. Detailed settings of model variants in Tab. 2.
Emb., Mtp., and Query represent embedding-based
prompt tokens, metapath-based prompt tokens only,
and query tokens respectively. Shuffle represents the
random permutation layer.

Variant Emb. Mtp. Query Shuffle

Base ✗ ✗ ✓ ✓
Emb.-based Only ✓ ✗ ✓ ✓
Mtp.-based Only ✗ ✓ ✓ ✓
Ours w/o Rand. Perm. ✓ ✓ ✓ ✗
Ours (SymPrompt) ✓ ✓ ✓ ✓

We analyze the effective-
ness of each component
in our framework to con-
firm the necessity of con-
structing our model as de-
signed and provide sup-
portive evidence for the
two-step inference process
conducted by our model.
Additionally, we add an-
other model variant named
Random-Prompt, where the
symbolic prompts are re-
placed with randomly sam-
pled entity tokens. The in-
put component settings of the model variants are shown in Tab. 4.

Performance Comparison. We combine the adoption of the random per-
mutation layer and the components of the input tokens to expand the model
variants, and compare the performance with the best baseline in Fig. 4:
For the Base model which shares the same input tokens and embedding space
with DistMult, it relies on the language model (BERT) and the two-layer
MLP decoder for query answering, substituting the simple matrix multipli-
cation employed in DistMult. This substitution, while allowing the model to
yield better Hit@1 performance than the baselines, fails to achieve consistent
improvement across all evaluation metrics. This is because it is challenging
to enforce a complex language model encoder and a decoder to fill the role
of the multiplication operation. Therefore, we detour the functionality of our
model from the replication of matrix multiplication to mining the complex in-
teractive patterns between the query tokens and the symbolic prompt tokens.

12 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

Table 4. The token components discussed in
§ 4.3. Emb. represent embedding-based prompt to-
kens, Mtp. represents metapath-based prompt tokens,
Query represents query tokens, and Rand. represents
random prompt tokens.

Variant Emb. Mtp. Query Rand.

Base ✗ ✗ ✓ ✗
Emb.-based Only ✓ ✗ ✓ ✗
Mtp.-based Only ✗ ✓ ✓ ✗
Rand. Prompt ✗ ✗ ✓ ✓
SymPrompt (ours) ✓ ✓ ✓ ✗

For the Rand. Prompt
model, the addition of
randomly generated sym-
bolic prompts completely
collapses the model, re-
gardless of the employment
of random permutation.
This is because the model
is overwhelmed with the
massive noise brought by
the random tokens, and
cannot identify the query
tokens for the downstream
task. It suggests that the
symbolic prompt tokens
should be crafted with very limited noise to avoid model collapse.
The Embedding-based Only variant yields superior performance when combined
with the random permutation layer, especially for hit ratios with small K’s.
This suggests that the embedding-based symbolic prompts are effective in
providing both possible candidates and additional information regarding the
query. The inferior performance when not adopting the random permutation
layer results from the positional shortcut taken by the model, which weakens
the model’s ability in answer generation.
The Metapath-based Only model underperforms the Base model due to the
massive noise introduced in the prompts. Although the Embedding-based Only
model also accepts extra symbolic prompt tokens as the input, these prompt
tokens are geometrically similar in the embedding space and therefore introduce
less noise when providing information related to the query. However, the noises
in the metapath-based symbolic prompts introduced by following the correlated
metapaths are intractable, which inevitably results in inferior performance.
Our model outperforms all other variants under the two settings, suggesting
the necessity of combining the two sets of symbolic prompts. Furthermore, we
discover that as K increases, the gap between our variants and the baselines
decreases, and decreases faster under the w/o Rand. Perm. setting. The decre-
ment is observed because as K increases, our model relies more on the more
challenging answer generation step to improve the metrics, while the baselines
consistently generate the answers (i.e., conducting the answer generation
step) through their designed geometrical operations. In addition, the random
permutation layer mingles the input tokens together, forcing our model to
focus on the intrinsic connection between the input tokens rather than the one
hooked by the token positions. This deprivation of position shortcut enhances
our model’s ability to generate more possible answers, therefore resulting in
slower performance gap decrement as K increases, compared with the baselines.

Symbolic Prompt Tuning 13

(a). Full Prompt (Ours) (b). Metapath-based Only (c). Embedding-based Only

Fig. 5. The training dynamics of models with full symbolic prompt tokens (ours),
metapath-based symbolic prompts only, and embedding-based symbolic prompts only.

Training Dynamics Comparison. We analyze the training dynamics of the
Embedding-based Only model, Metapath-based Only model, and our model under
two settings (i.e., adopt random permutation and not), and show the training dy-
namics in Fig. 5. We observe that models converge slower under w/ Rand.Perm.
than those under w/o Rand.Perm. This is because models with consistently
positioned input tokens tend to opt for the shortcut solution like memorizing
positions, rather than learning the intrinsic relations between the tokens. Identi-
fying the shortcut token’s positions, compared with generating the answer based
on the learned interactive patterns, is less challenging, leading to faster model
convergence. The phenomenon aligns with the two-step inference process, where
the model first tackles an easy task by attempting to identify existing answers in
the symbolic prompt tokens and then engages in the more complex task of gen-
erating answers. Additionally, we notice that the performance gaps in Hit@K for
different K’s are larger under w/ Rand. Perm., indicating better generality for
the HGC task. Our model neither saturates as quickly as Metapath-based Only
due to less noise introduced in the symbolic prompt, nor takes excessively long
to achieve performance improvement like Embedding-based Only, which relies
heavily on accessible shortcuts that hinder generality.

4.4 Random Permutation on Model Learning

To analyze how random permutation effects model learning, we showcase the
normalized attention scores heatmaps in Fig. 6 under the following three con-
ditions : (a) train and test the model under w/o. Rand. Perm..; (b) train the
model w/o. Rand. Perm., but test it under w/ Rand. Perm.; (c) train and test
the model under w/ Rand. Perm. (our model). The correct answer entity ranks
1, 133, and 1 under the three conditions respectively. Under condition (a), we

14 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

Relation indexSource entity index Answer-in-the-prompts index

(a). Train and test w/o Rand. Perm. (b). Train w/o and test w/ Rand. Perm. (c). Train and test w/ Rand. Perm (ours).

Fig. 6. The attention heatmaps in the layers of the model under three settings.

see the model consistently pays heavy attention to the 1st and 21st tokens. This
is because we set the number of embedding-based and metapath-based symbolic
prompts as 20, and the two positions correspond to the most probable answers.
Without random permutation, the model easily identifies the position shortcut
and pays less attention to the query tokens (indexed by the red and blue dotted
lines). Under condition (b), the model fails to assign a high rank to the correct
answer (133): the model rigidly assigns heavy attention to the 1st and 21st tokens
when they are no longer the most probable answers due to random permutation.
The model trained and tested under w/ Rand. Perm. as we designed, on the other
hand, assigns much more attention to the input sequence. Under condition (c),
our model learns to dynamically assign attention to the potential answers (red
and purple line intersections in Layer 1, Head 1), the source entity token (red
vertical dotted line in Layer 2, Head 2), and any other important information
it deems important (tokens indexed by 7, 31, etc.). The comparison showcases
that random permutation stimulates the model to learn the interactive patterns
between the input tokens, increasing its power in generalized query answering.

5 Conclusion

In this work, we focus on completing the missing data in the context of app
promotion to combat the information scarcity problem and propose a language
model-based approach named SymPrompt that leverages symbolic prompts to
provide valuable hints to answer the query. This research advances the under-
standing of app promotion networks, and we direct future works toward explain-
able information completion in the context of the app promotion ecosystem.

Acknowledgements

This work was partially supported by the NSF under grants IIS-2321504,
IIS-2334193, IIS-2340346, IIS-2203262, IIS-2217239, CNS-2203261, and CMMI-
2146076. Any opinions, findings, and conclusions or recommendations expressed

Symbolic Prompt Tuning 15

in this material are those of the authors and do not necessarily reflect the views
of the sponsors.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NeurIPS (2013)

2. Chen, S., Liu, X., Gao, J., Jiao, J., Zhang, R., Ji, Y.: Hitter: Hierarchical trans-
formers for knowledge graph embeddings. In: EMNLP (2021)

3. Dettmers, T., Pasquale, M., Pontus, S., Riedel, S.: Convolutional 2d knowledge
graph embeddings. In: AAAI (2018)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: NAACL (2019)

5. Guo, Z., Zhang, C., Fan, Y., Tian, Y., Zhang, C., Chawla, N.V.: Boosting graph
neural networks via adaptive knowledge distillation. In: AAAI (2023)

6. Hao, S., Liu, B., Nath, S., Halfond, W.G., Govindan, R.: Puma: Programmable
ui-automation for large-scale dynamic analysis of mobile apps. In: Annual Inter-
national Conference on Mobile systems, Applications, and Services (2014)

7. Jia, Y., Zhang, C., Vosoughi, S.: Aligning relational learning with lipschitz fairness.
In: ICLR (2024)

8. Jin, L., He, B., Weng, G., Xu, H., Chen, Y., Guo, G.: Madlens: Investigating
into android in-app ad practice at api granularity. IEEE Transactions on Mobile
Computing (2021)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

10. Li, J., Zhang, C., Zhang, C.: Heterogeneous temporal graph neural network ex-
plainer. In: CIKM (2023)

11. Liu, B., Nath, S., Govindan, R., Liu, J.: Decaf: Detecting and characterizing ad
fraud in mobile apps. In: USENIX Symposium on Networked Systems Design and
Implementation (2014)

12. Liu, T., Wang, H., Li, L., Luo, X., Dong, F., Guo, Y., Wang, L., Bissyandé, T.,
Klein, J.: MadDroid: Characterizing and detecting devious ad contents for android
apps. In: WWW (2020)

13. Liu, Z., Dou, G., Tian, Y., Zhang, C., Chien, E., Zhu, Z.: Breaking the trilemma
of privacy, utility, and efficiency via controllable machine unlearning. In: The Web
Conference (2024)

14. Liu, Z., Zhang, C., Tian, Y., Zhang, E., Huang, C., Ye, Y., Zhang, C.: Fair graph
representation learning via diverse mixture-of-experts. In: The Web Conference
(2023)

15. Lv, X., Lin, Y., Cao, Y., Hou, L., Li, J., Liu, Z., Li, P., Zhou, J.: Do pre-trained
models benefit knowledge graph completion? a reliable evaluation and a reasonable
approach. In: Findings of the Association for Computational Linguistics (2022)

16. Ouyang, Z., Zhang, C., Hou, S., Zhang, C., Ye, Y.: How to improve representation
alignment and uniformity in graph-based collaborative filtering? In: International
AAAI Conference on Web and Social Media (2024)

17. Qian, Y., Zhang, C., Zhang, Y., Wen, Q., Ye, Y., Zhang, C.: Co-modality graph
contrastive learning for imbalanced node classification. In: NeurIPS (2022)

18. Rafieian, O., Yoganarasimhan, H.: Targeting and privacy in mobile advertising.
Marketing Science (2021)

16 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

19. Research, G.: How people discover, use, and stay engaged with apps. Think with
Google (2023)

20. Rizun, M.: Knowledge graph application in education: a literature review. Acta
Universitatis Lodziensis. Folia Oeconomica (2019)

21. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by
relational rotation in complex space. In: ICLR (2018)

22. Tian, Y., Dong, K., Zhang, C., Zhang, C., Chawla, N.V.: Heterogeneous graph
masked autoencoders. In: AAAI (2023)

23. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML (2016)

24. Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. In: ACM
international conference on Measurement and modeling of computer systems (2014)

25. Wang, B., Shen, T., Long, G., Zhou, T., Wang, Y., Chang, Y.: Structure-augmented
text representation learning for efficient knowledge graph completion. In: WWW
(2021)

26. Wen, Q., Ouyang, Z., Zhang, C., Qian, Y., Zhang, C., Ye, Y.: GCVR: Reconstruc-
tion from cross-view enable sufficient and robust graph contrastive learning. In:
The 40th Conference on Uncertainty in Artificial Intelligence (2024)

27. Wen, Q., Ouyang, Z., Zhang, J., Qian, Y., Ye, Y., Zhang, C.: Disentangled dynamic
heterogeneous graph learning for opioid overdose prediction. In: Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2022)

28. Wu, J., Zhang, C., Liu, Z., Zhang, E., Wilson, S., Zhang, C.: Graphbert: Bridging
graph and text for malicious behavior detection on social media. In: ICDM (2022)

29. Xie, X., Zhang, N., Li, Z., Deng, S., Chen, H., Xiong, F., Chen, M., Chen, H.:
From discrimination to generation: knowledge graph completion with generative
transformer. In: WWW (2022)

30. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR (2015)

31. Yao, L., Mao, C., Luo, Y.: Kg-bert: Bert for knowledge graph completion. arXiv
preprint arXiv:1909.03193 (2019)

32. Yuan, X., Zhang, C., Tian, Y., Ye, Y., Zhang, C.: Mitigating emergent robustness
degradation on graphs while scaling up. In: ICLR (2024)

33. Yue, H., Zhang, C., Zhang, C., Liu, H.: Label-invariant augmentation for semi-
supervised graph classification. In: NeurIPS (2022)

34. Zhang, C., Huang, C., Li, Y., Zhang, X., Ye, Y., Zhang, C.: Look twice as much as
you say: Scene graph contrastive learning for self-supervised image caption gener-
ation. In: CIKM (2022)

35. Zhang, C., Huang, C., Tian, Y., Wen, Q., Ouyang, Z., Li, Y., Ye, Y., Zhang, C.:
When sparsity meets contrastive models: Less graph data can bring better class-
balanced representations. In: ICML (2023)

36. Zhang, C., Liu, H., Li, J., Ye, Y., Zhang, C.: Mind the gap: Mitigating the distribu-
tion gap in graph few-shot learning. Transactions on Machine Learning Research
(2023)

37. Zhang, C., Tian, Y., Ju, M., Liu, Z., Ye, Y., Chawla, N., Zhang, C.: Chasing
all-round graph representation robustness: Model, training, and optimization. In:
ICLR (2023)

38. Zhang, Z., Wang, J., Ye, J., Wu, F.: Rethinking graph convolutional networks in
knowledge graph completion. In: WWW (2022)

Symbolic Prompt Tuning 17

A Limitations

While our work showcases its superior performance, we do not test the limit of
our framework by trialing various language model backbones (in our work, we
use the representative BERT), which also effectively encode the input tokens by
considering their interactions. In addition, we design the framework specifically
for a heterogeneous graph, which is not generalized to knowledge graphs due
to the design of metapath-based symbolic prompts. We expect the symbolic
prompts to have the same effect in the case of knowledge graph-based question
answering, and also project the generalization as a future research direction.
Lastly, our model is evaluated specifically in the context of app promotion. It
is worthwhile to trial its effectiveness in other context and domains that also
encounter the problem of information scarcity.

B The App Promotion Dataset

B.1 Data Collection

The app promotion dataset is gathered following three steps. Initially, for each
app, the package name, developer information, and category of each app are
crawled from Google Play. Subsequently, an analysis is conducted on the app
using VirusTotal to examine the flags associated with its security level, along
with the corresponding URLs. Lastly, the manifest and signature of each app
are inferred through the process of reverse engineering (e.g., interesting strings
provided by the VirusTotal report). The promotion actions between apps are dis-
covered by checking whether the clickable widgets in an UI from the source apps
lead to the download page of the sink app. If so, then a source_app <promotes>
sink_app relation is identified. The collected raw data is then used to construct
the following App Promotion Heterogeneous Graph (APHG).

B.2 Detailed Relations

The descriptions of each relation in APHG are detailed as follows: (1) R1: an
app-promote-app relation indicates that there exists a promotion link from the
subject app to the object app; (2) R2: an app-include-signature relation
means that a digital signature can be used to verify the authenticity and in-
tegrity of the app package; (3) R3: an engine-detect-app relation indicates
that a VT engine marks an app with a specific flag (e.g., adware or Trojan); (4)
R4: an app-belong-category represents that an app belongs to a specific app
category categorized by Google Play; (5) R5: a developer-involve-category
relation suggests that an app created by the developer is categorized into a spe-
cific app category; (6) R6: a developer-develop-app relation signifies that a
developer develops an app; (7) R7: an app-access-URL relation denotes that
an app has access to a specific URL; (8) R8: a developer-use-URL relation
indicates that the app developed by the developer may access a specific URL;

18 Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, et al.

(9) R9: an app-own-manifest relation represents that an app is associated with
a specific manifest file. Since apps with different security levels follow different
behavior patterns, we further classify them into three sub-classes. For example,
the relation app-belong-category is extended to: benign-belong-category,
grey-belong-category, and mal-belong-category In total, the above rela-
tions are extended to twenty-nine classes of relation types.

C Empirical Evaluation for Entity Candidate Refining

Table 5. Empirical evaluation results of the
correlation between metapath and relation.

Relation pr sr br

mal-belong-category 0.922 4.932 0.137
benign-access-URL 0.879 129.329 0.007
developer-use-URL 0.457 42.905 0.002
grey-promote-grey 0.660 154.786 0.135

We here empirically validate the cor-
relation between the queried relation
and the refined entity candidates ob-
tained by following the metapaths.
Particularly, for relation r, denote sr
as the average size of the filtered can-
didates for all r-related triples. We
also let pr be the probability that the
candidates contain the correct answer,
and let br = sr/|dst(r)| be the propor-
tion of refined candidates to all possi-
ble entity answers. Table 5 presents
the statistics of the selected relations due to the large size of R. From the table,
we can see that: (1) for the relation mal-belong-category, where the aver-
age candidate size is 5, there is a 0.922 probability that the correct answer is
within these candidates. Relations like mal-belong-category, which has high
pr and small sr, demonstrate their strong correlation with the metapaths; (2)
for some relations whose candidate sizes are significantly reduced by the re-
fining process (demonstrated by small br), pr is positively related to sr (e.g.,
benign-access-URL has higher pr and sr than developer-use-URL). Those re-
lations have intermediate strengths of correlation with the metapaths; (3) for
relations like grey-promote-grey, the refining process can neither reduce the
candidate size significantly (155 is not small enough), nor provides rich informa-
tion about the query (low pr). These relations are therefore weakly related to
the metapaths. Nevertheless, the results confirm that the metapaths are corre-
lated with the relations to different extents, and this correlation is effective in
generating informative symbolic prompts.

D Experimental Setup

Compared Baselines. We compare our approach against several baselines
commonly used in the graph completion task:

– DistMult [30]: DistMult represents entities and relations as low-dimensional
vectors and utilizes a bilinear dot product scoring function for link prediction.

Symbolic Prompt Tuning 19

– ComplEX [23]: ComplEX extends DistMult by using complex-valued em-
beddings, which allows for a more expressive representation. The calculation
remains linear in both space and time.

– ConvE [3]: ConvE employs a convolutional neural network architecture to en-
code entities and relations. It operates on 2D tensors to capture local patterns
and dependencies within the knowledge graph.

– HittER [2]: HittER utilizes hierarchical transformers to learn knowledge
graph embeddings, balancing the contextual relational information and the
information from the training entity.

– LTE [38]: LTE extends embedding-based methods by equipping existing knowl-
edge graph embedding models with linearly transformed entity embeddings. It
mines semantic information from entity representations to enhance the model
performance. In this paper, we select DistMult and ConvE as the backbones,
denoted as DistMult-LTE and ConvE-LTE respectively.

Implementation Details. We use a pre-trained DistMult [30] as the back-
bone model to tokenize the entities and relations as low-dimensional vectors.
Note that this choice is a matter of preference, and can be substituted with
other embedding-based methods such as TransE [1]. ComplEX [23] is utilized
for prompt filtering, and can also be replaced by any other graph completion
methods. We encode the input sequence with a two-layer BERT model, and
utilize the sum operation to aggregate the encoded sequence. Finally, a two-
layer MLP is applied as the prediction head (decoder) for the HGC task. The
train/dev/test split ratio is 0.8/0.1/0.1, and we split the full data by randomly
mask the instances of each type of relations in the APHG. During training, we
employ the AdamW optimizer and use binary cross-entropy as the loss function.
In the pre-trained phase of DistMult, the learnable parameters are initialized
randomly, while BERT is loaded with pre-trained weight parameters. The train-
ing and testing process is conducted on an NVIDIA RTX 3090 GPU with 24 GB
of memory.

	Symbolic Prompt Tuning Completes the App Promotion Graph

