
On the Influence of Connectivity to CTR Prediction

Zhongyu Ouyang 1 Chunhui Zhang 1 Yaning Jia 1 Soroush Vosoughi 1

Abstract
Click-through rate (CTR) measures user engage-
ment in recommender systems. Traditional CTR
models predict interactions based on individual
features of users, items, and the context in be-
tween. However, these models often overlook the
complex and interconnected nature of user-item
interactions, failing to capture valuable connectiv-
ity patterns. To address this, we explore the im-
pact of leveraging user-item connectivity patterns
on the predictive ability of existing CTR predic-
tion models by incorporating the message pass-
ing (MP) mechanism exclusively in the embed-
ding process. To quantify the cost of performance
changes, we introduce Marginal Cost of Improve-
ment (MCI), a metric inspired by marginal utility,
that measures the utility required for incremental
improvements. Our theoretical analysis and exten-
sive experiments reveal three key insights: First,
the benefits of MP increase proportionally with
dataset density; Second, fine-tuning well-trained
CTR models with MP is more effective than train-
ing with MP from scratch; Third, measured by
MCI, MP-enhanced models allocate greater effort
to under-served users with lower original CTR per-
formance. These findings not only demonstrate
the effectiveness of MP in improving CTR predic-
tion but also highlight a promising direction for
democratizing CTR prediction. By prioritizing
under-served groups, MP has the potential to mit-
igate social media polarization and foster a more
equitable and inclusive social media environment.

1. Introduction
In modern recommendation systems (Wang et al., 2021;
Schafer et al., 1999; Ma et al., 2008; Jamali & Ester, 2010;
Fan et al., 2019), click-through rate (CTR) models pre-
dict user interaction probability, assisting developers in
enhancing user engagement and recommendation satisfac-
tion. Specifically, user and item IDs, along with contextual
features (e.g, user demographic information, item descrip-

1Dartmouth College, Hanover, US.

Feature
Interaction

Connectivity

CTR
Model

✅Well
established

❓Unclear - when
and how to include

connectivity?Raw Interaction Data

User Item User embedding Item embedding Context embedding

Figure 1. Building on well-established feature interaction mod-
eling, we analyze (i) when incorporating user-item connectivity
benefits CTR prediction, and (ii) how to effectively incorporate it.

tions, interaction timestamp) are encoded into latent vectors
(embeddings) through an embedding process. These em-
beddings are then concatenated and passed through into a
deep neural network (DNN) that captures both low-order
and high-order feature interactions. The model’s output
is a probability score indicating the likelihood of a user
interacting with an item.

Despite being widely adopted in social media recommen-
dation research, current CTR prediction pipelines fail to
fully account for the complexity of downstream tasks. Exist-
ing models primarily focus on feature interaction modeling,
learning user, item, and context representations indepen-
dently through typical linear or non-linear layers. How-
ever, user-item interactions—such as clicks, views, and
purchases—can be naturally represented as a social graph
that captures complex relationships among users (user-user),
items (item-item), and between users and items (user-item).
The impact of higher-order connectivity patterns on CTR
prediction remains unclear and under-explored. This re-
search gap is illustrated in Figure 1.

We systemically investigate how leveraging connectivity
patterns impacts the predictive capabilities of exiting CTR
models by incorporating message passing (MP), a mech-
anism that facilitates representation learning by utilizing
the structural and relational context of raw interaction data.
We begin with a theoretical analysis on how MP affects
model stability. Using the Lipschitz constant as the indica-
tor of model stability, we find that incorporating MP into the
representation learning effectively decreases the Lipschitz

1

On the Influence of Connectivity to CTR Prediction

Hidden
Dim.

#E
nc

od
e

d
ID

sUser ID

Item ID

Msg. Passing

#Encoded
IDs

Hidden
Dim.

(a). Table Encoder (b). Graph Encoder w/ Msg. Passing
User Item User embedding Item embedding

Figure 2. Encoders to encode user and item IDs.

constant of the representation mapping function. This re-
duction signifies lower model sensitivity to input variations,
thereby enhancing the stability of representation learning.

Next, we explore the potential of connectivity patterns to
enhance CTR prediction models with a focus on feature
interaction modeling. To isolate the impact of connectivity,
we integrate MP exclusively into the embedding process
while preserving the original feature modeling structure.
Our extensive experiments reveal that incorporating MP into
the embedding process yields a more stable performance
enhancement in dense datasets than in sparse ones. Further-
more, fine-tuning well-trained CTR models with MP proves
to be more effective than training with MP from scratch.

Finally, we analyze how CTR models allocate effort across
user groups in relation to their performance changes. We
introduce Marginal Cost of Improvement (MCI), a metric in-
spired by marginal utility (Walras, 1900; Menger & Menger,
1923), to quantify the utility required for incremental im-
provements. Theoretically, MCI satisfies conditions derived
from three natural marginal cost comparison cases (detailed
in Section 4.4). Empirically, MCI reveals that MP assigns
the greatest effort to under-served users with lower initial
CTR performance, regardless of their activity levels or de-
mographic profiles. These findings highlight a promising
direction for democratizing CTR technology by prioritizing
under-served groups and allocating greater effort to improve
their experiences. Additionally, MP offers the potential to
mitigate social media polarization, fostering a more equi-
table and inclusive social media ecosystem.

2. Background
Click-through Rate Prediction The problem of click-
through rate (CTR) prediction is defined as predicting the
interaction likelihood between a user and an item given the
user ID, item ID, and optional context features. Formally,
we denote IDs of user i and item j as xi and xj respectively,
and the context features of the interaction in between as
cij ∈ Rdc

, where dc refers to the contextual feature dimen-
sion. Let the encoder of user/item IDs be f(·) : R → Rd,
where d refers to the latent dimension of encoded ID em-
beddings. The traditional encoder f(·) in CTR models is
a look-up table encoder, where f(xi) is the xi-th entry in

a matrix E ∈ R(|U|+|I|)×d, where U is the user set and I
is the item set. This table encoder does not utilize connec-
tivity patterns between users and items, and is illustrated in
Figure 2 (a). The encoder of contextual features is defined
as h(·) : Rdc → Rd′

, where d′ is the dimension of encoded
contextual embeddings. Depending on the the feature type
(i.e., categorical or numerical), the embedding process can
be formulated as look-up tables for categorical features or a
DNN for numerical features.

To predict the probability that user i interacts with item j,
the input zij ∈ R2d+d′

to a CTR model is defined as:

zi = f(xi), zj = f(xj), zcij = h(cij), (1)

zij =
[
zi ∥ zj ∥ zcij

]
, (2)

where ∥ refers to the concatenation operation, zi and zj refer
to the latent ID embeddings of user i and item j generated by
the encoder respectively, and zcij is the encoded contextual
features. With the encoded embeddings, each CTR model
adopts its corresponding rating function r(·) : R2d+d′ → R
that models feature interaction to predict the likelihood of
interaction. Specifically, let pij = r(zij), where pij ∈ [0, 1]
represents how likely user i would interact with item j. The
CTR model is trained with the binary cross entropy loss:

L =− 1

N

∑
{i,j}∈Tr

yij log(pij) + (1− yij) log(1− pij)

+ λ
∑
l

∥w(l)∥2, (3)

where Tr denotes the training set, yij refers to the binary
label (1 for positive and 0 for negative), λ is the L2 regular-
ization coefficient, and l is the layer number of the model.

Message Passing As a widely studied framework for mes-
sage passing (MP), graph neural networks enable the ex-
change of meaningful representations among nodes in rela-
tional data (Kipf & Welling, 2016; Veličković et al., 2017;
Hamilton et al., 2017). To formulate the representation ex-
change in recommendation, let the interaction matrix be
R ∈ {0, 1}|U|×|I|, where ruv = 1 represents an observed
valid interaction between user u and item v, and 0 otherwise.
To extract collaborative signals, the interaction matrix R is
abstracted to a bipartite graph G = {V, E}, where V = U∪I
is the set of nodes and E = {(u, v)|u ∈ U , v ∈ I, ruv = 1}
is the set of edges. A linear layer that updates node features
using MP has the following update rule:

h′
i = σ (W (hi + Agg ({hj : j ∈ Ni}))) , (4)

where h′
i is node i’s updated embedding from hi, Ni is the

set of neighbors of node i, W is a shared weight matrix, σ
is a Lipschitz continuous activation function with Lipschitz
constant Lσ, and Agg(·) is the averaging function. We
depict this embedding process in Figure 2 (b).

2

On the Influence of Connectivity to CTR Prediction

Lipschitz Constant of Deep Models The Lipschitz con-
stant is a critical concept for understanding and controlling
the stability and robustness of deep models. A function
f : Rn → Rm is said to be Lipschitz continuous on an
input set X ⊆ Rn if there exists a bound K ≥ 0 such that
for all x,y ∈ X , f satisfies:

∥f(x)− f(y)∥ ≤ K ∥x− y∥ , ∀x,y ∈ X . (5)

The smallest possible K in Equation 5 is defined as the
Lipschitz constant of f , denoted as Lip(f):

Lip(f) = sup
x,y∈X ,x ̸=y

∥f(x)− f(y)∥
∥x− y∥

. (6)

In this context, f is referred to as a K-Lipschitz function,
where the Lipschitz constant K quantifies the maximum
change in the function’s output caused by a unit-norm pertur-
bation in its input. This constant serves as a crucial indicator
of a deep model’s stability wrt its inputs: a smaller Lipschitz
constant indicates lower sensitivity to input variations.

3. How Connectivity Changes CTR Prediction
We begin by conducting a theoretical analysis that examines
how connectivity patterns within user-item interactions re-
duces the Lipschitz constant of deep models, resulting in
smoother outputs at the level of individual nodes wrt input
variations. With this analysis, we design an experimental
strategy leverages these connectivity patterns in the repre-
sentation learning while reusing the existing CTR models.

3.1. MP Enhances CTR Model Stability

Theorem 1. For any node i ∈ V and its node feature
hi, consider the mapping function with the updating
rule demonstrated in Equation 4. Then, the Lipschitz
constant L of the mapping f : h 7→ h′, where h,h′ ∈
Rd are the collection of all node features in the graph
before and after the mapping respectively, satisfies:

L ≤ Lσ∥W∥F
√
1 +

1

ki
, (7)

where ∥W∥F is the Frobenius norm of the weight matrix
W , ki denotes the degree of node i, Lσ is the Lipschitz
constant of a Lipschitz continuous activation function
σ(·), and d is the dimension of the node feature.

Insight. Within the MP mechanism, an increased node de-
gree ki for node i reduces the Lipschitz constant of the
mapping function, thereby stabilizing the model output wrt
input variations.

Proof Sketch. To bound the Lipschitz constant L of the
MP update f : h 7→ h′, we analyze how changes in in-
put features h affect output features h′. The update for

node i combines its own features hi and an average of its
neighbors’ features: h′

i = σ
(
W
(
hi +

1
ki

∑
j∈Ni

hj

))
,

where σ is Lσ-Lipschitz and W has Frobenius norm ∥W∥F .
The Jacobian J of this mapping has non-zero blocks only
for hi and its neighbors hj , with ∂h′

i

∂h⊤
i

= DiW and
∂h′

i

∂h⊤
j

= DiW · 1
ki

, where Di contains activation deriva-

tives bounded by Lσ. The Frobenius norm of J is ∥J∥F ≤
Lσ∥W∥F

√
1 + 1

ki
, and since L ≤ ∥J∥2 ≤ ∥J∥F , we ob-

tain L ≤ Lσ∥W∥F
√
1 + 1

ki
. This shows that L decreases

as the neighborhood size ki grows, stabilizing the model.
For full proof, please refer to Appendix D.

3.2. Integrating MP into CTR models

The user-item bipartite graph captures rich topological rela-
tionships such as co-purchase or shared interests. To investi-
gate whether this topological information alone is beneficial
for CTR prediction, we replace the traditional table encoder
for ID encoding with a graph encoder to straightforwardly
integrate connectivity patterns into existing CTR models,
while preserving the feature interaction modeling structures.
Unlike a table encoder which independently encodes the ID
information for users and items, a graph encoder addition-
ally leverages the topological relationships in the graph to
generate user and item embeddings.

We adopt LightGCN (He et al., 2020), a well-studied linear
MP mechanism, as the replacing graph encoder of exiting
CTR methods. In LightGCN, Equation 4 is simplified by
removing both the non-linearity σ(·) and the weight ma-
trix W , focusing solely on linear aggregation of neighbor
information. This minimalistic design streamlines the MP
process, and has been proven effective in recommendation
tasks. Specifically, let fg(·, ·) : G × x → Rd be the graph
encoder. For user i and item j, fg(·, ·) conducts MP in
each layer to propagate and aggregate information from the
neighborhood. The graph-encoded embedding for node i
(user or item) is obtained with the following:

zi = fg(G, xi) =

L∑
l=0

alz
(l)
i , (8)

where z(l)i =
∑
v∈Ni

1√
|Ni|

√
|Nj |

z(l−1)
j and z(0)j = f(xj).

(9)

In Equation 9, z(l)i is the embedding for node i in layer l, Ni

is the set of neighbors for node i in G, and al is the readout
coefficient for each layer-l’s embeddings. With the obtained
graph-based user and item ID embeddings, we construct
the input features following Equation 2, and fed them into
any CTR method (e.g., DCN) to predict the interaction
probabilities. We depict this encoding process in Figure 3.

3

On the Influence of Connectivity to CTR Prediction

Layer 3

𝒛!!
(#) 𝒛!"

(#)𝒛!#
(#) 𝒛!$

(#) 𝒛!%
(#)

Normalized Sum Layer 1
Layer 2

𝒛% 𝒛%
(&)
𝒛%
(')
𝒛%
(()

Agg.

…

…

…

𝑢

𝑖&

𝑖'
𝑖(

𝑖)

𝑖*

Raw Interaction Data

Encode

Figure 3. The message passing mechanism for recommendation.

4. Experiments
We investigate MP’s influence to the CTR models from
the following perspectives: (i) Dataset Density: How does
dataset density affect the effectiveness of MP? (ii) Training
Paradigm: When incorporating MP, should we train from
scratch or adapt existing well-trained models? (iii) User
Activity: How does MP affect the performance across users
with varying activity levels? (iv) Supervision Reliability:
Do samples with weak/noisy supervisions affect those with
strong/reliable supervisions?

4.1. Setup

Datasets We select two publicly representative recom-
mendation benchmark datasets with distinct global dataset
density to conduct our experiments: (1) MovieLens-1M1

dataset is a dense dataset sourced from the MovieLens web-
site, containing 1 million ratings from 6,000 users on 4,000
movies; (2) Yelp20222 dataset is a sparse dataset which
includes a large collection of user reviews, item information,
and user-item interactions from the Yelp platform.

For each dataset, we rely on k-core filtering (He & McAuley,
2016), which retains users and items with at least k inter-
actions, to vary the local dataset density. The higher k, the
higher local dataset density. To analyze supervision reliabil-
ity, we denote RM as retaining middle-rated samples, where
RM=✓ represents retaining samples with middle ratings
(i.e., samples with weak/noisy supervisions), and RM=✗
represents otherwise. We demonstrate the meta data of the
curated datasets utilized in the experiments in Table 1.

For all datasets, we convert user-to-item ratings into binary
labels through thresholding. We randomly split the datasets
with a ratio of 0.8/0.1/0.1 for training, validation, and testing,
respectively. Each experimental setting is repeated under
five random seeds and the averaged performance is reported.

Baselines We select six state-of-the-art CTR baseline
models that emphasize advanced feature interaction mod-

1
https://grouplens.org/datasets/movielens/1m/

2
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset/

Table 1. The meta data of the curated datasets. k is the least number
of interactions per user and item. Density = (#Inters / (#Users ×
#Items))×100%.

k Users Inter/User Items Inter/Item Inters Density%

ML-1M (dense)

3 6K 165.6 3.5K 285.5 1M 4.72
6 6K 165.5 34K 296.0 1M 4.90
10 6K 165.3 3.3K 306.3 1M 5.07

Yelp2022 (sparse)

3 529K 9.8 144K 36.2 5.2M 0.01
6 215K 17.9 96K 40.3 3.9M 0.02
10 99K 27.9 56K 48.9 2.8M 0.05

eling, spanning a variety of approaches such as deep
cross networks (Wang et al., 2021; 2023), attention mecha-
nisms (Song et al., 2019; Mao et al., 2023), and automated
neural architecture designs (Tian et al., 2023; Cheng et al.,
2020). Specifically, we select DCNV2 (Wang et al., 2021),
AutoInt (Song et al., 2019), EulerNet (Tian et al., 2023),,
AFN (Cheng et al., 2020), FinalMLP (Mao et al., 2023),
and GDCNP (Wang et al., 2023). These models collectively
represent the forefront of CTR prediction methodologies,
providing a robust foundation for comparison. Focusing on
models designed specifically for feature interaction model-
ing isolates the impact of MP effectively. Including diverse
model types with differing objectives (e.g., behavior pre-
diction, auxiliary tasks) could introduce modeling biases,
confounding the true effects of connectivity patterns. More
details of the baseline models are provided in Appendix B.

Training Configurations We adopt binary cross-entropy
demonstrated in Equation 3 as the loss function to train mod-
els on the training set, and choose the AdamW (Loshchilov
& Hutter, 2019) as the optimizer. We conduct grid searches
over all the baseline models’ provided hyper-parameters for
their best AUC performance on the validation set. With
the best hyper-parameters, we train the models under five
random seeds and save all the checkpoints. Methods are
evaluated by inferring the corresponding saved checkpoints.

Evaluation Metrics Following previous studies, we use
the AUC score as the primary metric to evaluate CTR pre-
diction performance. Logloss results are provided in Ap-
pendix C.1. We introduce the Marginal Cost of Improve-
ment (MCI) metric, detailed in Section 4.4, to quantify the
utility required for performance changes.

Three-tiered MP Integration to CTR models We pro-
pose a three-tier analysis framework that progressively inte-
grates MP components at increasing levels of sophistication:
(i) The baseline tier, denoted as Base, preserves the original
CTR architectures without incorporating any MP mecha-
nisms, serving as a fundamental performance benchmark;

4

https://grouplens.org/datasets/movielens/1m/
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset/

On the Influence of Connectivity to CTR Prediction

Table 2. The AUC comparison between models under TS (train from scratch with MP) and Base (the original CTR model). ∆% shows
the relative change brought by TS. Yelp2022 is the sparse dataset and ML-1M is the dense dataset. Color intensities show the extent of
improvement or decrement and grey means no significant change . k is the minimum number of interactions per user and item.

ML-1M

Model DCNV2 EulerNet FinalMLP

k 3 6 10 3 6 10 3 6 10

Base 82.20 82.20 82.11 82.00 82.09 81.95 82.18 82.15 82.04
TS(∆%) 82.33 (0.16) 82.34 (0.18) 82.24 (0.16) 82.25 (0.30) 82.21 (0.15) 82.18 (0.28) 82.21 (0.03) 82.22 (0.09) 82.17 (0.15)

Model GDCNP AFN AutoInt

Base 82.07 82.12 81.97 82.02 82.08 81.93 82.11 82.14 81.99
TS(∆%) 82.33 (0.32) 82.35 (0.28) 82.24 (0.33) 82 (-0.02) 82.16 (0.10) 82.06 (0.16) 82.17 (0.08) 82.24 (0.12) 82.05 (0.07)

Yelp2022

Model DCNV2 EulerNet FinalMLP

Base 81.65 80.48 77.22 81.45 79.30 77.41 79.82 78.18 76.56
TS(∆%) 80.3 (-1.66) 79.19 (-1.61) 77.21 (-0.01) 81.65 (0.25) 79.71 (0.52) 77.52 (0.15) 79.87 (0.06) 78.27 (0.12) 76.97 (0.54)

Model GDCNP AFN AutoInt

Base 81.38 79.39 77.52 81.12 79.20 77.54 82.06 79.88 78.09
TS(∆%) 81.63 (0.31) 80.04 (0.83) 78.01 (0.63) 81.02 (-0.13) 79.64 (0.55) 77.77 (0.29) 81.57 (-0.60) 78.96 (-1.15) 76.41 (-2.16)

(ii) The second tier, denoted as FT, enhances the baseline by
fine-tuning well-trained CTR models with graph encoders
as MP modules, allowing for an evaluation of incremental
performance gains from this augmentation; (iii) The third
tier, denoted as TS, represents the most comprehensive in-
tegration, where CTR models are randomly initialized and
trained from scratch with graph encoder-based MP through-
out the entire training process.

4.2. Exploring the Benefits of MP for CTR Prediction

MP generally benefits CTR prediction. Within each
dataset, we vary k in k-core filtering to adjust density locally
among users and items. We compare TS, the third-tiered MP
integration, with the baseline CTR models denoted as Base
with varied k in {3, 6, 10} of each dataset, where higher
k represents higher dataset density. The AUC results are
shown in Table 2. According to the table, TS demonstrates
prominent beneficial performance in AUC score in 27 out
of 36 experiments, while yielding considerable and inferior
performance in 3 and 6 experiments, respectively, across
six different models and three k-core values. These results
indicates that MP generally benefits CTR prediction.

The benefits of MP are more pronounced in dense
datasets. Among 18 experiments, 16 demonstrate an av-
erage AUC gain of 0.18%, while the remaining two exhibit
less than 0.05% performance fluctuations compared to Base
models. In contrast, for the sparse dataset Yelp2022, the
beneficial ratio decreases to 11 out of 16, and the effective-
ness of MP is model-dependent. This is because a higher
interaction density provides richer connectivity patterns, en-
abling MP to effectively propagate meaningful information
between users and items. The limited connectivity in sparse

datasets reduces the quality of information propagation with
more inherent noises, making the effectiveness of MP more
dependent on the model’s architecture and its ability to com-
pensate for the lack of data.

Global dataset density drives MP effectiveness over local
density. When examining local density among users and
items, we notice that as k increases (i.e., higher local den-
sity), the benefits measured by relative performance does not
consistently increase. There is no obvious pattern indicating
that increased local density leads to more significant relative
improvement. The effectiveness of MP depends more on
the global dataset density (the dataset as a whole), rather
than the local density among individual users or items.

4.3. Comparing between MP Integration Strategies

fine-tuning well-trained CTR models with MP is the
better integration than training from scratch. To deter-
mine which level of connectivity integration is more ben-
eficial for CTR prediction, we compare FT (second-tier
integration by fine-tuning from Base) and TS (third-tier in-
tegration by training with MP from scratch) across varying
k values. All the samples, whether they are strongly- or
weakly-supervised, are retained in the training set. Focus-
ing on the AUC results in Table 3 with EvalMR set to ✗
(evaluated on the complete test set), FT consistently outper-
forms TS in terms of relative performance improvement. On
average, FT achieves a 0.22% higher relative performance
change than TS across all datasets, with 0.11% on the dense
dataset and 0.33% on the sparse dataset.

Importantly, the results on the dense and sparse datasets
further reinforce our previous finding, which states that inte-
grating MP more consistently benefits CTR prediction on

5

On the Influence of Connectivity to CTR Prediction

Table 3. The AUC comparison between TS (train from scratch with MP), FT (finetune from the original model with MP), and Base (the
original CTR model). EvalRM denotes whether samples with middle ratings (weak supervisions) are retained (✓) or removed (✗) during
evaluation. In training, samples with middle ratings (weak supervisions) are retained (✓). Yelp2022 is the sparse dataset and ML-1M is
the dense dataset. Color intensities refer to the extent of improvement or decrement and grey means no significant change .

Model EvalRM Dataset ML-1M Yelp2022
k 3 6 10 3 6 10

DCNV2

✓
Base 82.20 82.20 82.11 81.65 80.48 77.22

FT(∆%) 82.51 (0.38) 82.53 (0.40) 82.25 (0.17) 80.49 (-1.42) 79.52 (-1.19) 77.61 (0.51)
TS(∆%) 82.33 (0.16) 82.34 (0.18) 82.24 (0.16) 80.3 (-1.66) 79.19 (-1.61) 77.21 (-0.01)

✗
Base 89.57 89.56 89.41 86.35 85.73 82.30

FT(∆%) 89.87 (0.33) 89.84 (0.31) 89.6 (0.21) 85.93 (-0.48) 85.09 (-0.75) 83.11 (0.98)
TS(∆%) 89.69 (0.14) 89.67 (0.12) 89.58 (0.19) 85.72 (-0.72) 84.55 (-1.38) 82.7 (0.49)

AutoInt

✓
Base 82.11 82.14 81.99 82.06 79.88 78.09

FT(∆%) 82.28 (0.22) 82.32 (0.22) 82.2 (0.26) 81.84 (-0.26) 79.72 (-0.20) 78.13 (0.05)
TS(∆%) 82.17 (0.08) 82.24 (0.12) 82.05 (0.07) 81.57 (-0.60) 78.96 (-1.15) 76.41 (-2.16)

✗
Base 89.47 89.50 89.28 86.95 85.08 83.39

FT(∆%) 89.66 (0.22) 89.7 (0.22) 89.47 (0.21) 86.76 (-0.23) 84.92 (-0.20) 83.48 (0.10)
TS(∆%) 89.56 (0.11) 89.59 (0.11) 89.37 (0.10) 86.56 (-0.45) 84.3 (-0.92) 81.88 (-1.82)

FinalMLP

✓
Base 82.18 82.15 82.04 79.82 78.18 76.56

FT(∆%) 82.3 (0.14) 82.31 (0.19) 82.15 (0.13) 79.52 (-0.37) 77.91 (-0.35) 76.73 (0.22)
TS(∆%) 82.21 (0.03) 82.22 (0.09) 82.17 (0.15) 79.87 (0.06) 78.27 (0.12) 76.97 (0.54)

✗
Base 89.50 89.44 89.33 84.63 83.12 81.57

FT(∆%) 89.61 (0.12) 89.62 (0.20) 89.44 (0.12) 84.34 (-0.34) 82.77 (-0.43) 81.85 (0.34)
TS(∆%) 89.55 (0.06) 89.56 (0.14) 89.44 (0.12) 84.82 (0.23) 83.4 (0.33) 82.22 (0.79)

dense rather than sparse datasets. While adding MP en-
hances the performance of models trained on ML-1M, it can
sometimes negatively impact models trained on Yelp2022,
especially when local density is low (i.e., with small k val-
ues). However, we notice that even when integrating MP has
a negative effect, FT generally mitigates the adverse impact
more effectively than TS, which integrates MP comprehen-
sively from the start of model training. Therefore, when
incorporating MP to models trained on dense datasets, fine-
tuning from well-trained CTR models proves to be more
efficient than training with MP from scratch, by leading to
more performance benefits with less computational costs.

Performance improvement in dense datasets is more con-
sistent across weakly and strongly-supervised samples.
We use EvalRM to assess the consistency of AUC perfor-
mance among samples with varying levels of supervision
reliability. Specifically, in Table 3, we focus on results eval-
uated on the results evaluated on the test set where weakly
supervised samples are either retained (✓) or removed (✗).

For the dense dataset, the relative performance improve-
ment is more consistent across samples providing strong
and weak supervision compared to the sparse dataset. This
is evidenced by the comparable relative performance ob-
served regardless of whether weakly supervised samples are
removed or retained. For example, for AutoInt evaluated by
ML-1M with k = 3, the relative performance improvement
by FT remains 0.22 in both cases. Similarly, for Final MLP

evaluated by ML-1M with k = 10, the relative performance
improvement by TS shows minimal variation (0.13 vs 0.12).
In ML-1M, the difference in relative performance change
between EvalRM set to ✗ and ✓ is within 0.03%. However,
this difference increase to 0.29% in Yelp2022.

4.4. Democratizing CTR Prediction into Under-served
Groups through MP

Under-served groups Under-served groups refer to users
with lower prediction performance compared to others, re-
gardless of their interaction activity levels. For instance, a
highly active user who interacts with niche items might still
receive lower prediction accuracy due to insufficient overlap-
ping patterns with other users, making them under-served.
Conversely, a highly active user engaging with popular items
can be well-served due to the abundance of shared interac-
tion data. Similarly, a low-active user may also be either
under-served or well-served; an infrequent user interacting
with niche items may suffer from low prediction accuracy,
while another interacting with popular items may benefit
from higher accuracy despite their low activity level.

Marginal Cost of Improvement While relative perfor-
mance change is widely adopted to evaluate the extent of
improvement, it can be misleading as it disproportionately
amplifies small gains when baseline performance is low,
making them appear more significant. Moreover, it over-
looks the marginal cost required to achieve these improve-

6

On the Influence of Connectivity to CTR Prediction

Table 4. The AUC performance on ML-1M (6-core) and Yelp2022 (10-core) across users with varying activity levels. Base refers to the
original CTR model, TS refers to training from scratch with MP, and FT refers to fine-tuning from the original model with MP.

ML-1M

Model DCNV2 AutoInt FinalMLP

Variant Base FT(∆%) TS(∆%) Base FT(∆%) TS(∆%) Base FT(∆%) TS(∆%)

Overall ↑ 82.20 82.53 (0.40) 82.34 (0.18) 82.14 82.32 (0.22) 82.24 (0.12) 82.15 82.31 (0.19) 82.22 (0.09)
Low-U.Act. ↑ 76.51 77.02 (0.67) 77.00 (0.63) 76.61 76.97 (0.48) 76.76 (0.19) 76.47 76.60 (0.18) 76.66 (0.25)
Mid-U.Act ↑ 79.91 80.34 (0.53) 80.12 (0.25) 79.87 80.10 (0.29) 79.97 (0.12) 79.98 80.16 (0.22) 80.03 (0.06)

High-U.Act. ↑ 83.24 83.5 (0.31) 83.32 (0.10) 83.15 83.29 (0.17) 83.24 (0.12) 83.15 83.29 (0.17) 83.22 (0.08)
Var(L,M,H) ↓ 11.30 10.48 (-7.28) 10.01 (-11.43) 10.69 9.97 (-6.73) 10.52 (-1.58) 11.17 11.2 (0.34) 10.76 (-3.62)

Yelp2022

Overall ↑ 77.22 77.61 (0.51) 77.21 (-0.01) 78.09 78.13 (0.05) 76.41 (-2.16) 76.56 76.73 (0.22) 76.97 (0.54)
Low-U.Act. ↑ 79.34 79.25 (-0.11) 79.02 (-0.41) 79.70 79.61 (-0.10) 76.79 (-3.65) 76.84 76.89 (0.07) 77.48 (0.84)
Mid-U.Act. ↑ 78.52 78.63 (0.13) 78.27 (-0.32) 79.14 79.11 (-0.04) 76.87 (-2.86) 77.02 77.18 (0.21) 77.55 (0.69)
High-U.Act. ↑ 76.14 76.79 (0.85) 76.39 (0.32) 77.23 77.36 (0.17) 76.21 (-1.32) 76.30 76.49 (0.26) 76.60 (0.39)
Var(L,M,H) ↓ 2.77 1.64 (-40.61) 1.84 (-33.60) 1.67 1.40 (-16.51) 0.13 (-92.17) 0.14 0.12 (-14.93) 0.28 (102.12)

ments, which is crucial for assessing the actual effort a
model expends to deliver such gains.

To address this problem, inspired by the economic concept
of marginal utility (Walras, 1900; Menger & Menger, 1923),
we propose Marginal Cost of Improvement (MCI), a met-
ric that quantifies the marginal utility required to achieve
performance improvements. In our context, we use MCI
to measure the effort allocated to each user group for their
respective performance change. Specifically, let pb ∈ (0, 1)
be the baseline AUC and c be the absolute change in AUC.
A valid (pb, c) satisfies pb + c ∈ (0, 1). MCI is defined as:

MCI(pb, c) = log

(
1− pb

1− pb − c

)
. (10)

Notice that c > 0 indicates a performance improvement
with the corresponding MCI > 0; c < 0 indicates a perfor-
mance decrement with the corresponding MCI < 0.

Importantly, MCI satisfies conditions derived from three
natural marginal utility comparison cases: (i) Under the
same baseline performance (pb), the larger the absolute
change in performance (c), the higher the cost (MCI); (ii)
Under the same ultimate performance (pb+c), the lower the
baseline performance, the higher the cost; (iii) Under the
same absolute change in performance, the lower the baseline
performance, the higher the cost required or utility lost (i.e.,
|MCI| is larger). The corresponding MCI of various (pb, c)
pairs are plotted in Figure 4. We prove that MCI satisfies
the above three conditions in Appendix E.

Impact of MP on Under-served Groups MP inherently
allocates greater effort to under-served groups by propagat-
ing information from well-represented users those who are
under-served. Using activity level as the grouping factor,
we categorize users into low-active, medium-active, and
highly-active groups based on their number of interactions.

0.68 → 0.76
𝑐=0.08

MCI=0.125

0.76 → 0.84
𝑐=0.08

MCI=0.176

(i) Given 𝑝!, MCI ↑ as c ↑

(ii) Given 𝑝" + 𝑐, MCI ↑ as 𝑝! ↓

(iii) Given 𝑐, MCI ↑ as 𝑝! ↑

MCI

Figure 4. A plot of MCI values with varied performance. pb is
the baseline performance, c is the absolute performance change,
and pb + c is the new performance. The MCI in between
MCI(pb, c) = log((1− pb)/(1− pb − c)).

We first evaluate the AUC performance of each user group
to identify the under-served users, and then utilize MCI to
inspect the effort allocated to each group relative to their
performance changes.

The AUC performance of each user group is presented in Ta-
ble 4. For ML-1M, low-active users are identified as under-
served, with an average performance decrement of 6.9%
compared to the overall AUC. Conversely, in Yelp2022,
highly-active users are under-served with on average 1.4%
less than the overall performance. The above result high-
lights that being highly active does not guarantee a user will
be well-served by the model. Furthermore, we observe that
the variance in the AUC performance across user groups
is generally reduced in both FT and TS compared to Base.
Performance variance across user groups serves as a strong
indicator of democratization—the smaller the variance, the
greater the level of democratization and equity among users.

7

On the Influence of Connectivity to CTR Prediction
M
L-
1M

Ye
lp
20
18

User Activity Level (AUC)

M
C

I (
x1

00
)

0.0
0.1
0.2
0.3
0.4

Low (76.47) Mid (79.98) High (83.15)

Finetune with MP (0.19%)
Train from scratch with MP (0.09%)

FinalMLP

User Activity Level (AUC)

M
C

I (
x1

00
)

0.0
0.2
0.4
0.6
0.8

Low (76.61) Mid (79.87) High (83.15)

Finetune with MP (0.22%)
Train from scratch with MP (0.12%)

AutoInt

User Activity Level (AUC)

M
C

I (
x1

00
)

0.0
0.2
0.4
0.6
0.8

Low (76.51) Mid (79.91) High (83.24)

Finetune with MP (0.40%)
Train from scratch with MP (0.18%)

DCNV2

User Activity Level

M
C

I (
x1

00
)

0.00
0.25
0.50
0.75
1.00
1.25

Low (76.84) Mid (77.02) High (76.30)

Finetune with MP (0.22%)
Train from scratch with MP (0.54%)

FinalMLP

User Activity Level
M

C
I (

x1
00

)

-6
-4
-2
0
2

Low (79.70) Mid (79.14) High (77.23)

Finetune with MP (0.05%)
Train from scratch with MP (-2.16%)

AutoInt

User Activity Level

M
C

I (
x1

00
)

-0.75
-0.25
0.25

Low (79.34) Mid (78.52) High (76.14)

Finetune with MP (0.51%)
Train from scratch with MP (-0.01%)

DCNV2

Figure 5. MCI-evaluated cost for performance improvement (MCI >0) and decrement (MCI <0) across users with varying activity levels.
In ML-1M, low-active users are identified as the under-served group, while in Yelp2022, it is the group consists of highly-active users.

We further evaluate the MCI for each performance change
across user groups, with the results illustrated in Figure 5.
In ML-1M where both FT and TS exhibit performance im-
provements, the models consistently allocate greater effort
to low-active users (the under-served group in ML-1M)
compared to others. In Yelp2022 where the effectiveness of
MP is more model-dependent, performance improvements
primarily result in greater effort allocated to highly-active
users (the under-served group in Yelp2022). Conversely,
when MP leads to performance downgrades, under-served
users experience the least utility lost measured demonstrated
by the smallest absolute MCI values. These observations
reinforce the notion that MP, whether integrated through
FT or TS, inherently supports the democratization of CTR
prediction by prioritizing under-served users.

4.5. MP Mitigates Social Media Polarization

Social media platforms often create echo chambers, where
users are predominantly exposed to content that aligns with
their existing beliefs (Pazzanese, 2017; Barberá, 2020). This
selective exposure reinforces pre-existing opinions and fos-
ters ideological segregation. Environments characterized
by echo chambers tend to exacerbate societal polarization
in the real world, influencing areas such as politics, wealth
disparity, and democratic elections (Gillani et al., 2018).

In CTR prediction models, similar isolation patterns can
occur. For example, models may inadvertently favor user
groups with higher activity levels, leading to disparities in
performance across different user segments. This bias can
result in the under-representation of less active users, creat-
ing a form of “algorithmic echo chamber” within models’
predictions (Centola, 2020; Piccardi et al., 2024). Beyond
the numerical improvement from the integration of MP
technique within CTR models, it potentially further facili-

tates the propagation of information across well-represented
users to under-served ones, equitably bridging the gap be-
tween users with different activity levels. Our analysis with
the MCI metric, demonstrates that MP inherently allocates
greater effort to under-served groups. This allocation is evi-
dent in the favored AUC performance observed among these
groups with MP integration. By prioritizing the improve-
ment of under-served user segments, MP not only democra-
tizes CTR prediction but also moves towards mitigating the
risk of polarization within the model’s outcomes.

5. Conclusion
In this work, we investigate how leveraging user-item con-
nectivity patterns affect existing CTR models. Our theo-
retical analysis first shows that incorporating connectivity
reduces the Lipschitz constant of a deep model, thereby
enhancing its stability. We then apply the MP mechanism
exclusively in the embedding process to enhance existing
CTR models. To quantify the utility required for perfor-
mance changes, we introduce the MCI metric that measures
the marginal utility of incremental improvements. Our ex-
tensive experiments reveal that incorporating MP, especially
in fine-tuning, provides a more stable performance enhance-
ment in dense datasets than in sparse ones. Evaluated by
MCI, we discover that MP democratizes CTR technology
into under-served groups by allocating the greatest benefits
to users with lower original CTR prediction performance,
enhancing the inclusivity of recommendation environments.

Impact Statement
Our investigation into integrating MP into CTR prediction
models has significant social and research impacts. First,
MP facilitates the propagation of information from well-

8

On the Influence of Connectivity to CTR Prediction

represented to under-served users, leading to numerical
performance improvements. Our findings offer practical
guidance for both industry practitioners and researchers
on when and how to effectively leverage connectivity pat-
terns for optimal performance enhancement within existing
CTR prediction pipelines. Second, MP reduces performance
disparities across user groups by mitigating algorithmic bi-
ases that disproportionately favor certain users, leading to
a more equitable and inclusive recommendation landscape.
Lastly, democratizing CTR prediction into under-served
groups helps counteract the formation of algorithmic echo
chambers, where specific user groups receive disproportion-
ately tailored content. By preventing the reinforcement of
these echo chambers, MP reduces the risk of misinformation
spreading, ultimately preserving trust in credible sources
and mitigating the dominance of harmful narratives.

References
Araujo, A., Negrevergne, B., Chevaleyre, Y., and Atif, J.

On Lipschitz regularization of convolutional layers using
toeplitz matrix theory. In AAAI, 2021.

Barberá, P. Social media, echo chambers, and political
polarization. Social media and democracy: The state of
the field, prospects for reform, 2020.

Centola, D. Why social media makes us more polarized and
how to fix it. Scientific American, 2020.

Cheng, W., Shen, Y., and Huang, L. Adaptive factorization
network: Learning adaptive-order feature interactions. In
AAAI, 2020.

Dasoulas, G., Scaman, K., and Virmaux, A. Lipschitz nor-
malization for self-attention layers with application to
graph neural networks. In ICML, 2021.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin,
D. Graph neural networks for social recommendation. In
WWW, 2019.

Gama, F. and Sojoudi, S. Distributed linear-quadratic con-
trol with graph neural networks. Signal Processing, 2022.

Gillani, N., Yuan, A., Saveski, M., Vosoughi, S., and Roy,
D. Me, my echo chamber, and i: introspection on social
media polarization. In WWW, 2018.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. Deepfm:
a factorization-machine based neural network for CTR
prediction. In IJCAI, 2017.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NIPS, 2017.

He, R. and McAuley, J. Vbpr: visual bayesian personalized
ranking from implicit feedback. In AAAI, 2016.

He, X. and Chua, T.-S. Neural factorization machines for
sparse predictive analytics. In SIGIR, 2017.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M.
Lightgcn: Simplifying and powering graph convolution
network for recommendation. In SIGIR, 2020.

Horn, R. A. and Johnson, C. R. Matrix Analysis. Cambridge
University Press, 1985.

Jamali, M. and Ester, M. A matrix factorization technique
with trust propagation for recommendation in social net-
works. In ACM Recommender Systems conference, 2010.

Kim, H., Papamakarios, G., and Mnih, A. The Lipschitz
constant of self-attention. In ICML, 2021.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2016.

Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., and Sun, G.
xdeepfm: Combining explicit and implicit feature inter-
actions for recommender systems. In SIGKDD, 2018.

Lin, Z., Tian, C., Hou, Y., and Zhao, W. X. Improving
graph collaborative filtering with neighborhood-enriched
contrastive learning. In WWW, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2019.

Ma, H., Yang, H., Lyu, M. R., and King, I. Sorec: social
recommendation using probabilistic matrix factorization.
In CIKM, 2008.

Mao, K., Zhu, J., Su, L., Cai, G., Li, Y., and Dong, Z.
Finalmlp: an enhanced two-stream mlp model for ctr
prediction. In AAAI, 2023.

Menger, C. and Menger, K. Grundsätze der volkswirtschaft-
slehre. Hölder-Pichler-Tempsky, 1923.

Ouyang, Z., Zhang, C., Hou, S., Zhang, C., and Ye, Y. How
to improve representation alignment and uniformity in
graph-based collaborative filtering? In ICWSM, 2024.

Pauli, P., Gramlich, D., and Allgöwer, F. Lipschitz con-
stant estimation for 1d convolutional neural networks. In
Learning for Dynamics and Control Conference, 2023.

Pazzanese, C. Danger in the internet echo chamber. Harvard
Gazette, 2017.

9

On the Influence of Connectivity to CTR Prediction

Piccardi, T., Saveski, M., Jia, C., Hancock, J. T., Tsai, J. L.,
and Bernstein, M. Social media algorithms can shape
affective polarization via exposure to antidemocratic atti-
tudes and partisan animosity, 2024.

Qi, X., Wang, J., Chen, Y., Shi, Y., and Zhang, L. Lips-
former: Introducing lipschitz continuity to vision trans-
formers. In ICLR, 2023.

Rendle, S. Factorization machines. In ICDM, 2010.

Schafer, J. B., Konstan, J., and Riedl, J. Recommender
systems in e-commerce. In ACM conference on Electronic
commerce, 1999.

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., and
Tang, J. Autoint: Automatic feature interaction learning
via self-attentive neural networks. In CIKM, 2019.

Terris, M., Repetti, A., Pesquet, J.-C., and Wiaux, Y. Build-
ing firmly nonexpansive convolutional neural networks.
In ICASSP, 2020.

Tian, Z., Bai, T., Zhao, W. X., Wen, J.-R., and Cao, Z.
Eulernet: Adaptive feature interaction learning via euler’s
formula for CTR prediction. In SIGIR, 2023.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. Graph attention networks. In ICLR,
2017.

Walras, L. Éléments d’économie politique pure: ou, Théorie
de la richesse sociale. F. Rouge, 1900.

Wang, C., Yu, Y., Ma, W., Zhang, M., Chen, C., Liu, Y., and
Ma, S. Towards representation alignment and uniformity
in collaborative filtering. In SIGKDD, 2022.

Wang, F., Gu, H., Li, D., Lu, T., Zhang, P., and Gu, N.
Towards deeper, lighter and interpretable cross network
for ctr prediction. In CIKM, 2023.

Wang, R., Fu, B., Fu, G., and Wang, M. Deep and cross
network for ad click predictions. In Proceedings of the
Workshop on Data Mining for Online Advertising (AD-
KDD), 2017.

Wang, R., Shivanna, R., Cheng, D., Jain, S., Lin, D., Hong,
L., and Chi, E. Dcn v2: Improved deep & cross net-
work and practical lessons for web-scale learning to rank
systems. In WWW, 2021.

Wang, X., He, X., Wang, M., Feng, F., and Chua, T.-S.
Neural graph collaborative filtering. In SIGIR, 2019.

Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., and
Xie, X. Self-supervised graph learning for recommenda-
tion. In SIGIR, 2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In In ICLR, 2018.

Yu, J., Yin, H., Xia, X., Chen, T., Cui, L., and Nguyen, Q.
V. H. Are graph augmentations necessary? simple graph
contrastive learning for recommendation. In SIGIR, 2022.

Zhu, J., Jia, Q., Cai, G., Dai, Q., Li, J., Dong, Z., Tang, R.,
and Zhang, R. Final: Factorized interaction layer for ctr
prediction. In SIGIR, 2023.

Zou, D., Balan, R., and Singh, M. On lipschitz bounds of
general convolutional neural networks. IEEE Transac-
tions on Information Theory, 2019.

10

On the Influence of Connectivity to CTR Prediction

A. Related Work
A.1. Click-through Rate Prediction

Early CTR research focused on efficiently modeling interac-
tions between user-item pairs and contextual features. Low-
order feature interactions were preserved using methods like
Factorization Machines (Rendle, 2010), while high-order
feature interactions were explored through deep neural net-
works (He & Chua, 2017; Guo et al., 2017; Lian et al.,
2018). Later studies refined DNN architectures to automati-
cally learn bounded-degree feature interactions (Wang et al.,
2017; Cheng et al., 2020; Wang et al., 2021; Zhu et al.,
2023; Mao et al., 2023). More recent approaches have pro-
posed projecting features into predefined hyperspaces (Song
et al., 2019; Tian et al., 2023), enabling more efficient and
complex feature interactions. Building upon previous re-
search, this study explores the potential of the additional
information embedded in the connectivity patterns among
users, items, and between users and items in benefiting the
predictive ability in CTR models.

A.2. Message Passing

Graph Neural Networks (GNNs) are robust learning frame-
works designed to extract meaningful representations from
graph-structured data (Kipf & Welling, 2016; Veličković
et al., 2017; Hamilton et al., 2017). These networks map
input nodes into low-dimensional vectors, which can be
applied to various tasks, such as graph-level classifica-
tion (Xu et al., 2018) or node-level predictions (Kipf &
Welling, 2016). Most GNNs utilize a layer-wise MP mech-
anism (Gilmer et al., 2017), where each node iteratively
aggregates information from its first-order neighbors. By
stacking multiple layers, these models capture information
from multi-hop neighbors, enabling a richer contextual un-
derstanding. GNNs are also widely adopted to abstract col-
laborative filtering signals from user-item interactive graphs.
Improving upon NGCF (Wang et al., 2019), one of the pio-
neering efforts to apply GNNs to ranking recommendation,
LightGCN (He et al., 2020) identifies the redundancies in the
non-linearity and over-parametrization of traditional GNN
architectures, and has spurred numerous following works
with noticeable performance improvements (Wu et al., 2021;
Yu et al., 2022; Wang et al., 2022; Lin et al., 2022; Ouyang
et al., 2024).

A.3. Lipschitz Constant in Deep Models

Prior research on Lipschitz constants has primarily focused
on general deep models incorporating convolutional or atten-
tion layers (Zou et al., 2019; Terris et al., 2020; Kim et al.,
2021; Araujo et al., 2021; Pauli et al., 2023). In the context
of attention, Dasoulas et al. (2021) discuss the Lipschitz
constant for their designed a Lipschitz continuous Trans-

Table 5. The corresponding Logloss to the AUC performance in
Table 2. Lower logloss’s (↓) indicate better prediction confidence.

Model Dataset ML-1M Yelp2022
k 3 6 10 3 6 10

DCNV2
Base 0.5095 0.5095 0.5115 0.5110 0.5091 0.5829
TS 0.5064 0.5069 0.5102 0.5031 0.5076 0.5286

∆% ↓ -0.60 -0.51 -0.25 -1.55 -0.29 -9.31

EulerNet
Base 0.5123 0.5137 0.5161 0.4774 0.4935 0.5100
TS 0.5113 0.5104 0.5105 0.4712 0.4975 0.5150

∆% ↓ -0.21 -0.64 -1.08 -1.29 0.81 0.97

FinalMLP
Base 0.5079 0.5083 0.5090 0.4980 0.5051 0.5143
TS 0.5077 0.5071 0.5086 0.4917 0.5046 0.5118

∆% ↓ -0.03 -0.23 -0.09 -1.27 -0.11 -0.48

GDCNP
Base 0.5105 0.5112 0.5124 0.4755 0.4955 0.5064
TS 0.5091 0.5092 0.5095 0.4722 0.4851 0.5015

∆% ↓ -0.27 -0.39 -0.58 -0.69 -2.10 -0.97

AFN
Base 0.5098 0.5091 0.5103 0.5228 0.5295 0.5338
TS 0.5100 0.5083 0.5088 0.5166 0.5166 0.5398

∆% ↓ 0.02 -0.16 -0.29 -1.19 -2.44 1.13

AutoInt
Base 0.5099 0.5091 0.5128 0.4681 0.4945 0.5011
TS 0.5080 0.5079 0.5112 0.4739 0.6053 0.5452

∆% ↓ -0.38 -0.24 -0.33 1.25 22.41 8.80

former Qi et al. (2023). More recently, (Gama & Sojoudi,
2022) estimated the filter Lipschitz bound using the infinite
norm of a matrix.

B. Baselines
DCNV2 (Wang et al., 2021) learns explicit and implicit fea-
ture interactions through a cross-network and a deep neural
network, respectively. It improves DCN with a low-rank
cross-network that enhances the efficiency and interpretabil-
ity of the model. AutoInt (Song et al., 2019) utilizes self-
attentive neural networks to learn more effective feature
interactions. EulerNet (Tian et al., 2023) learns high-order
feature interactions by transforming their exponential pow-
ers into linear combinations of the modulus and phase of
complex features. AFN (Cheng et al., 2020) focuses on mod-
eling feature interactions through an adaptive logarithmic
transformation, capturing both low- and high-order interac-
tions effectively. FinalMLP (Mao et al., 2023) simplifies
the learning process by leveraging a lightweight, fully con-
nected structure to model feature interactions with high
efficiency. GDCNP (Wang et al., 2023) enhances deep cross
networks by integrating graph-based connectivity to refine
feature representation and interaction modeling.

C. Further Analysis
C.1. Logloss Results

We provide the Logloss results in Table 5 and 6, in relative to
the AUC performance in Table 2 and 3. Note that different
from AUC, the lower Logloss, the more reliable the output.

The results in Table 5 generally align with those in Table 2.
In the dense dataset ML-1M, incorporating MP under the TS

11

On the Influence of Connectivity to CTR Prediction

Table 6. The corresponding Logloss results to the AUC performance in Table 3. Lower logloss’s (↓) indicate better prediction confidence.
Base refers to the original CTR model, TS refers to training from scratch with MP, and FT refers to fine-tuning from the original model
with MP. k is the least number of interactions per user and item.

Model EvalRM Dataset ML-1M Yelp2022
k 3 6 10 3 6 10

DCNV2

✗
Base 0.5095 0.5095 0.5115 0.5110 0.5091 0.5829

FT(∆%) 0.5037 (-1.14) 0.5032 (-1.24) 0.5075 (-0.77) 0.4983 (-2.49) 0.497 (-2.38) 0.5325 (-8.64)
TS(∆%) 0.5064 (-0.6) 0.5069 (-0.51) 0.5102 (-0.25) 0.5031 (-1.55) 0.5076 (-0.29) 0.5286 (-9.31)

✓
orig 0.4082 0.4129 0.4138 0.4021 0.4615 0.5070

FT(∆%) 0.4012 (-1.72) 0.4009 (-2.92) 0.4101 (-0.87) 0.4209 (4.68) 0.4149 (-10.11) 0.4825 (-4.84)
TS(∆%) 0.4103 (0.52) 0.4058 (-1.73) 0.4151 (0.31) 0.4262 (6) 0.416 (-9.86) 0.464 (-8.48)

AutoInt

✗
Base 0.5099 0.5091 0.5128 0.4681 0.4945 0.5011

FT(∆%) 0.5071 (-0.56) 0.5059 (-0.64) 0.5084 (-0.86) 0.4696 (0.33) 0.4918 (-0.55) 0.4992 (-0.37)
TS(∆%) 0.508 (-0.38) 0.5079 (-0.24) 0.5112 (-0.33) 0.4739 (1.25) 0.6053 (22.41) 0.5452 (8.8)

✓
Base 0.4139 0.4109 0.4132 0.3914 0.4257 0.4027

FT(∆%) 0.4116 (-0.54) 0.4094 (-0.37) 0.4224 (2.22) 0.3968 (1.38) 0.4173 (-1.97) 0.4062 (0.87)
TS(∆%) 0.4199 (1.47) 0.4034 (-1.84) 0.4293 (3.9) 0.4042 (3.27) 0.607 (42.58) 0.4886 (21.33)

FinalMLP

✗
Base 0.5079 0.5083 0.5090 0.4980 0.5051 0.5143

FT(∆%) 0.5061 (-0.35) 0.506 (-0.45) 0.5074 (-0.32) 0.4933 (-0.95) 0.5046 (-0.11) 0.511 (-0.63)
TS(∆%) 0.5077 (-0.03) 0.5071 (-0.23) 0.5086 (-0.09) 0.4917 (-1.27) 0.5046 (-0.11) 0.5118 (-0.48)

✓
Base 0.4129 0.4079 0.4159 0.4109 0.4074 0.4029

FT(∆%) 0.4095 (-0.81) 0.4076 (-0.06) 0.4097 (-1.51) 0.4072 (-0.89) 0.4087 (0.33) 0.4026 (-0.07)
TS(∆%) 0.4116 (-0.31) 0.4102 (0.57) 0.4161 (0.04) 0.4078 (-0.75) 0.4083 (0.23) 0.3959 (-1.73)

Table 7. The meta data for the paired curated datasets.
ML-1M

TrRM k #users #inter/user #items #inter/item #inters Density%

✓ 1 6.0K 165.6 3.7K 269.9 1.0M 4.47
✗ 19 5.7K 128.6 2.9K 251.4 0.7M 4.44

✓ 3 6.0K 165.6 3.5K 285.5 1.0M 4.72
✗ 22 5.4K 133.1 2.8K 256.5 0.72M 4.74

Yelp2022

✓ 3 0.5M 9.8 0.14M 36.2 5.2M 0.01
✗ 3 0.5M 9.2 0.14M 32.0 4.5M 0.01

✓ 6 0.2M 17.9 96K 40.3 3.8M 0.02
✗ 6 0.2M 16.8 89K 36.3 3.2M 0.02

configuration not only improves the AUC performance but
also enhances prediction confidence. Similar to the observa-
tions from Table 2, in the sparse dataset Yelp2022, we find
the benefits of MP in enhancing the reliability of the predic-
tions is model-dependent. For instance, in DCNV2 (Wang
et al., 2021), MP consistently improves prediction reliability
enhancement, whereas in EulerNet (Tian et al., 2023), MP
proves beneficial only when local dataset is low. However,
for AutoInt (Song et al., 2019), incorporating MP negatively
impacts prediction reliability across all k values.

The results in Table 6 also align with those in Table 3. Com-
paring with TS, incorporating MP under FT is more likely to
enhance model prediction confidence, as reflected in lower
Logloss values. Even when MP decreases confidence, FT
mitigates the negative effect brought by MP more effectively
than TS. Notably, we observe that prediction confidence in

strongly supervised samples is lower than the overall confi-
dence, suggesting that these samples exhibit more general
patterns, making them easier for the model to distinguish.
Consequently, improving confidence in predicting strongly
supervised samples is more challenging, as their confidence
levels are already high, whereas noisy, weakly supervised
samples offer more room for confidence improvement.

C.2. Impact of Supervision Reliability on MP in CTR
Prediction

We vary the inclusivity of weakly-supervised samples during
both training and testing to further investigate how supervi-
sion reliability affects the effectiveness of integrating MP to
CTR prediction. To control for the influence of data density,
we group curated datasets into pairs with similar densities.
By comparing results within each pair, we can isolate and
analyze the impact of supervision reliability during training
while minimizing the effects of the confounding factor of
dataset density. The meta data for the the paired curated
datasets is provided in Table 7.

The results in Table 8 indicate that excluding weakly su-
pervised samples during training improves the performance
of strongly supervised samples. In the dense dataset ML-
1M, MP consistently enhances performance regardless of
the inclusion of weakly supervised samples, with relative
improvements remaining stable across both weakly and
strongly supervised samples. However, in sparse datasets,
training with weakly supervised samples affects the integra-

12

On the Influence of Connectivity to CTR Prediction

Table 8. The AUC comparison between TS (train from scratch with MP) and Base (the original CTR model) across different middle-rating
processing configurations. Samples with middle ratings (weakly-supervised) are either retained (✓) or removed (✗) during training
(TrRM) and evaluation (EvalRM). k is the least number of interactions per user and item. ∆% shows the relative change brought by TS.
Yelp2022 is the sparse dataset and ML-1M is the dense dataset. Color intensities refer to the extent of improvement or decrement and

grey means no significant change .

Dataset ML-1M Yelp2022

Model TrRM EvalRM ✓ ✗ EvalRM ✓ ✗
k Base TS(∆%) Base TS(∆%) k Base TS(∆%) Base TS(∆%)

DCNV2

✓ 1 82.00 82.12 (0.14) 89.44 89.55 (0.11) 3 81.65 80.3 (-1.66) 86.35 85.72 (-0.72)
✗ 19 - 90.15 90.34 (0.21) 3 - 88.14 86.96 (-1.33)

✓ 3 82.20 82.33 (0.16) 89.57 89.69 (0.14) 6 80.48 79.19 (-1.61) 85.73 84.55 (-1.38)
✗ 22 - 90.14 90.21 (0.08) 6 - 86.26 85.83 (-0.49)

FinalMLP

✓ 1 81.95 81.97 (0.03) 89.35 89.38 (0.04) 3 79.82 79.87 (0.06) 84.63 84.82 (0.23)
✗ 19 - 90.22 90.32 (0.11) 3 - 85.90 85.75 (-0.17)

✓ 3 82.18 82.21 (0.03) 89.50 89.55 (0.06) 6 78.18 78.27 (0.12) 83.12 83.4 (0.33)
✗ 22 - 90.26 90.4 (0.16) 6 - 84.56 84.48 (-0.09)

GDCNP

✓ 1 81.86 82.15 (0.35) 89.27 89.58 (0.35) 3 81.38 81.63 (0.31) 86.37 86.69 (0.37)
✗ 19 - 90.04 90.34 (0.33) 3 - 86.70 87.1 (0.47)

✓ 3 82.07 82.33 (0.32) 89.38 89.7 (0.35) 6 79.39 80.04 (0.83) 84.51 85.24 (0.86)
✗ 22 - 90.11 90.39 (0.31) 6 - 85.58 86.16 (0.68)

AutoInt

✓ 1 81.93 81.96 (0.04) 89.34 89.38 (0.04) 3 82.06 81.57 (-0.6) 86.95 86.56 (-0.45)
✗ 19 - 90.13 90.19 (0.06) 3 - 87.09 86.97 (-0.14)

✓ 3 82.11 82.17 (0.08) 89.47 89.56 (0.11) 6 79.88 78.96 (-1.15) 85.08 84.3 (-0.92)
✗ 22 - 90.14 90.21 (0.08) 6 - 85.35 85.85 (0.59)

tion of MP—when MP leads to performance gains, strongly
supervised samples experience higher relative improvement,
while in cases of performance degradation, the negative
effects on strongly supervised samples are mitigated. Fur-
thermore, we again observe that the effectiveness of MP
in the sparse Yelp2022 dataset is highly model-dependent,
emphasizing the need for careful consideration when inte-
grating MP in sparse datasets.

D. Proof of Theorem 1
Theorem 1 For any node i ∈ V and its node feature hi, con-
sider the mapping function with the updating rule demon-
strated in Equation 4. Then, the Lipschitz constant L of
the mapping f : h 7→ h′, where h,h′ ∈ Rd are the collec-
tion of all node features in the graph before and after the
mapping respectively, satisfies:

L ≤ Lσ∥W∥F
√
1 +

1

ki
,

where ∥W∥F is the Frobenius norm of the weight matrix W ,
ki denotes the degree of node i, Lσ is the Lipschitz constant
of a Lipschitz continuous activation function σ(·), and d is
the dimension of the node feature.

Proof. We aim to estimate the Lipschitz constant L of the
mapping f : h 7→ h′, where h and h′ denotes the collection
of all node features in the graph before and after the map-
ping, respectively. The Lipschitz constant measures how
much the output of the function can change with respect to
changes in the input, and can be estimated by analyzing the
Jacobian matrix J of the mapping.

Step 1: Define the Jacobian of the Mapping
Consider the mapping for node i:

h′
i = σ

W

hi +
1

ki

∑
j∈N (i)

hj

 = σ (W si) , (11)

where si = hi + hagg and hagg = 1
ki

∑
j∈N (i) hj . The

Jacobian matrix J of this mapping is the matrix of partial
derivatives of h′

i wrt all node features hj for j ∈ V:

J =
∂h′

i

∂h⊤ , (12)

where h′
i ∈ Rd is the updated feature vector of node i, and

h ∈ R|N |d denotes the concatenation of all node features in
the graph.

Step 2: Express the Jacobian matrix

13

On the Influence of Connectivity to CTR Prediction

The Jacobian matrix can be partitioned into blocks corre-
sponding to derivatives for hi and hj ,∀j ∈ N (i):

(i) For the partial derivative of h′
i wrt hi, we have

∂h′
i

∂h⊤
i

= DiW, (13)

where Di = diag (σ′ (W si)) is a diagonal matrix con-
taining the derivatives of the activation function applied
element-wise, and σ′(·) is the elementwise derivative of the
activation function σ(·).

(ii) For the partial derivative of h′
i wrt hj ,∀j ∈ N (i):

∂h′
i

∂h⊤
j

=

{
DiW · 1

ki
, if j ∈ N (i),

0, otherwise.
(14)

This distinction of the two cases arises because h′
i depends

only on the features of node i and its neighbors j ∈ N (i).

Step 3: Bound the Partial Derivatives
To estimate the Lipschitz constant, we need to estimate the
spectral norm of the Jacobian ∥J∥2. Since the spectral norm
is less than or equal to the Frobenius norm (Horn & Johnson,
1985), we seek to compute the Frobenius norm of J:

∥J∥F =

√√√√√∥∥∥∥ ∂h′
i

∂h⊤
i

∥∥∥∥2
F

+
∑

j∈N (i)

∥∥∥∥∥ ∂h′
i

∂h⊤
j

∥∥∥∥∥
2

F

. (15)

We now simplify the expression separately. We simplify the
first Frobenius norm as:∥∥∥∥ ∂h′

i

∂h⊤
i

∥∥∥∥
F

= ∥DiW∥F ≤ ∥Di∥F ∥W∥F

≤Lσ∥W∥F . (16)

Similarity, the second Frobenius norm can be simplified as:∥∥∥∥∥ ∂h′
i

∂h⊤
j

∥∥∥∥∥
F

=

∥∥∥∥DiW · 1

ki

∥∥∥∥
F

=
1

ki
∥DiW∥F

≤∥Di∥F ∥W∥F
ki

≤Lσ∥W∥F
ki

(∥Di∥F ≤ Lσ). (17)

Summing over the norms, we have:

∑
j∈N (i)

∥∥∥∥∥ ∂h′
i

∂h⊤
j

∥∥∥∥∥
2

F

≤ ki

(
Lσ∥W∥F

ki

)2

=
(Lσ∥W∥F)2

ki
.

(18)

Step 4: Combine Terms for the Frobenius Norm
Combining Equation 16 and 18, we then have the Frobenius
norm following the constraint:

∥J∥2F ≤ (Lσ∥W∥F)2
(
1 +

1

ki

)
. (19)

Taking the square root:

∥J∥F ≤ Lσ∥W∥F
√
1 +

1

ki
. (20)

Step 5: Frobenius Norm Bound to Lipschitz Constant
Since the Lipschitz constant L is the supremum of the spec-
tral norm of the Jacobian over all inputs ∥J∥2, and the spec-
tral norm is always bounded above by the Frobenius norm
∥J∥F , any upper bound on the Frobenius norm immediately
provides an upper bound on L:

L ≤ Lσ∥W∥F
√
1 +

1

ki
. (21)

E. Proof of the Three Conditions for MCI
We define pb ∈ (0, 1) as the baseline AUC and c as the
absolute change in AUC. A valid (pb, c) satisfies pb + c ∈
(0, 1). We define MCI as:

MCI(pb, c) = log

(
1− pb

1− pb − c

)
. (22)

We now prove that the design of MCI satisfies three condi-
tions derived from three natural marginal utility comparison
cases: (i) Under the same baseline performance (pb), the
larger the new performance is, the higher the cost is; (ii)
Under the same ultimate performance (pb+c), the lower the
baseline performance is, the higher the cost is; (iii) Under
the same absolute change in performance, the lower the
baseline performance, the higher the cost required or lost
(i.e., |MCI| is larger).

Proof. It is trivial to show that with the same pb, the larger
c is, the higher the value of MCI is, satisfying condition (i).
The definition of MCI can be reformulated as:

MCI(pb, c) = log

(
1− pb

1− (pb + c)

)
.

From the above equation, it is trivial to tell that with the
same pb + c, the smaller pb is, the larger the MCI is. There-
fore, condition (ii) is satisfied.

We now prove that MCI satisfies condition (iii). Let
p1b , p

2
b ∈ (0, 1) be two baseline AUCs satisfying p1b < p2b .

Also consider a value for c such that p1b + c, p2b + c ∈ (0, 1).
Therefore, (p1b , c) and (p2b , c) are valid pairs for MCI calcu-
lation. The difference between MCI(p1b , c) and MCI(p2b , c)
can be formulated as:

MCI(p1b , c)− MCI(p2b , c) = log
(1− p2b)(1− p1b − c)

(1− p1b)(1− p2b − c)
.

(23)

14

On the Influence of Connectivity to CTR Prediction

Subtracting the numerator with the denominator, we have:

(1− p2b)(1− p1b − c)− (1− p1b)(1− p2b − c) = c(p2b − p1b).

Case 1: performance improvement with c > 0:
Since c > 0 and p2b > p1b , we know 0 < c(p2b − p1b) < 1,
which means the numerator is larger than the denominator
in Equation 23. Therefore, we have:

log

(
(1− p2b)(1− p1b − c)

(1− p1b)(1− p2b − c)

)
> 0

⇒ MCI(p1b , c)− MCI(p2b , c) > 0

⇒ MCI(p1b , c) > MCI(p2b , c).

Since we also have p1,2b + c > p1,2b , which means

MCI(p1,2b , c) = log

(
1− p1,2b

1− (p1,2b + c)

)
> 0.

Therefore, we have:

|MCI(p1b , c)| > |MCI(p2b , c)|,

indicating condition (iii) is satisfied in this case.

Case 2: performance decrement with c < 0:
Since c < 0 and p2b > p1b , we know c(p2b − p1b) < 0, which
means the numerator is smaller than the denominator in
Equation 23. Therefore, we have:

log
(1− p2b)(1− p1b − c)

(1− p1b)(1− p2b − c)
< 0

⇒ MCI(p1b , c)− MCI(p2b , c) < 0

⇒ MCI(p1b , c) < MCI(p2b , c).

Since we also have p1,2b + c < p1,2b , which means

MCI(p1,2b , c) = log

(
1− p1,2b

1− (p1,2b + c)

)
< 0.

Therefore, we have:

|MCI(p1b , c)| > |MCI(p2b , c)|,

indicating condition (iii) is satisfied in this case.

15

