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Abstract

Sequential recommendation systems aim to pro-
file users via their interaction histories, akin
to the human cognitive process to infer intent
from observed behaviors. However, conven-
tional large language model (LLM)-based rec-
ommender often fail to replicate the nuanced
adaptability of human reasoning—specifically,
the ability to contextualize preference hier-
archies, personalized scales, and situational
factors. Existing methods rely on reductive
pairwise preference ranking, neglecting the
multi-dimensional, dynamic nature of human
decision-making and limiting alignment with
cognitively grounded user profiling. In this
paper, we propose RecPO, a preference op-
timization method that integrates contextual
calibration into LLM-based recommenders to
emulate human adaptive reasoning. Our frame-
work employs adaptive reward margins that
dynamically adjust preference signals by in-
corporating explicit user ratings and interac-
tion latency, achieving granular alignment with
individual decision patterns. Through exten-
sive experiments, we underscore hierarchical
preference modeling’s role in bridging algo-
rithmic recommendations and human cognitive
strategies. RecPO not only surpasses state-of-
the-art baselines by a significant margin but
also uniquely balances temporal consistency
(chronologically prioritizing preferred items)
with avoidance of dispreferred items in fu-
ture interactions. Code: https://anonymous.
4open.science/r/RecP0-D3DB/

1 Introduction

In modern social media, recommender systems are
ubiquitous in shaping user experiences by deliv-
ering personalized content across various online
platforms, including e-commerce (Sarwar et al.,
2000; Schafer et al., 1999), video streaming ser-
vices (Davidson et al., 2010; Deldjoo et al., 2020),
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Figure 1: Cognitive behaviors in decision-making: (i)
Preference differences vary in constructed pairwise pref-
erence data; (ii) Preference is discounted by time.

and social media networks (Ma et al., 2008; Jamali
and Ester, 2010; Fan et al., 2019). These systems
learn user preferences by capturing patterns in his-
torical interactions between users and items, such
as click-streams, merchandise purchase histories,
or movie reviews. Sequential recommendation, as
a specialized form of recommendation, predicts the
next item a user is likely to interact with based on
his/her historical behaviors. This form of recom-
mendation plays a crucial role in real-world applica-
tions, such as movie recommendation on streaming
platforms like Netflix, or curating the next song
on Spotify based to listening history. Unlike static
recommender systems, a sequential recommender
is required to identify temporal dynamics and con-
textual nuances in user behavior sequences, where
preferences are continuously evolving.

Classical sequential recommender systems (Sun
et al., 2019; Tang and Wang, 2018; Chang et al.,
2021) leverage deep sequential architectures, such
as recurrent neural networks (RNNs (Hidasi, 2016))
and Transformers (Kang and McAuley, 2018), to
model user preferences from chronologically or-
dered interaction sequences. Information collected
from platforms, including user/item IDs and con-
textual features (e.g., item descriptions, interaction
timestamps), are encoded as low-dimensional vec-
tors, which are then fed into these architectures for
sequential preference pattern modeling and final
prediction. These models are specifically tailored
for sequential recommendation, thus highly effec-
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tive with superior compactness and efficiency. On
the other hand, recent advancements in foundation
language models (LMs), especially large language
models (LLMs), have stimulated growing interest
in their application to various tasks, including se-
quential recommendation (Harte et al., 2023; Li
et al., 2023; Yang et al., 2024; Bao et al., 2023;
Zhang et al., 2023). With vast world knowledge and
sophisticated reasoning capabilities, LLM-based
recommenders hold substantial potentials for im-
proving sequential recommendation with deep con-
textual understanding and complex user profiling.

User profiling plays a pivotal role in recommen-
dation tasks by mirroring the advanced cognitive
ability humans exhibit when adapting interpreta-
tions to individual perspectives during decision-
making (Astington and Jenkins, 1995). How-
ever, current LLM-based recommender systems
often struggle in achieving comparable cognitive
flexibility. While existing preference modeling
approaches, such as direct preference optimiza-
tion (DPO) (Rafailov et al., 2024) and its deriva-
tives (Chen et al., 2024; Meng et al., 2024; Amini
et al., 2024), leverage pairwise preference data to
rank preferred items over dis-preferred ones, this
strategy oversimplifies the complexity of human
preferences. Specifically, it neglects the hierar-
chical structure of user preferences, where the de-
gree of preference (e.g., mild vs. strong) encodes
critical user-specific signals, as illustrated in Fig-
ure 1(i). Moreover, previous efforts fail to account
for time-discounted preferences. In sequential rec-
ommendation scenarios, for instance, suggesting
a 4-star item in the near term holds greater prac-
tical value than proposing a 5-star item that may
only become relevant in the distant future. This
time-discounted aspect of human decision-making,
depicted in Figure 1(ii), remains unaddressed in ex-
isting LLM-based recommender systems, limiting
their alignment with real-world user behavior.

To bridge this gap: First, we conduct a proof-
of-concept experiment to demonstrate the bene-
fits of leveraging comprehensive user preference
feedback in recommendation. Then, we propose
RecPO, a framework that enhances LLM-based
recommender systems by emulating the human
cognitive process of contextual calibration through
fine-grained preference feedback. Compared to
previous methods, our framework is highlighted
in the following aspects: (i) Instead of removing
historical interactions with negative feedback from
conditioned historical sequences, we retain inter-

actions of all preference levels; (ii) Fine-grained
explicit preference feedback or their proxy is pro-
vided; (iii) Time-discounted preference is consid-
ered when generating preference data; (iv) Prefer-
ence alignment is tailored with an adaptive reward
margin indicating gaps in preference levels. Fi-
nally, we conduct extensive experiments to show
that our framework better aligns with human pref-
erence behaviors. It not only ensures that the most
preferred item consistently ranks highest but also
organizes items according to fine-grained prefer-
ence levels. Moreover, it accurately relegates truly
disliked items to lower ranks, capturing a nuanced
understanding of user preferences and aversions.

2 Related Work

Sequential Recommendation Sequential rec-
ommendation models temporal user preferences
in interaction sequences. Early methods adopt
structures such as recurrent neural networks
(GRU4Rec (Hidasi, 2016)) and self-attention mech-
anisms (SASRec (Kang and McAuley, 2018)). Re-
cent advances integrate LLMs for their rich seman-
tic understanding and contextual reasoning capa-
bilities. These recommenders exploit textual infor-
mation such as item descriptions as interaction his-
tories for nuanced user profiling and interpretable
predictions (Liao et al., 2024; Bao et al., 2023).
Emerging approaches also utilize prompting (Geng
et al., 2022) and multi-modal data (Yuan et al.,
2023) for more comprehensive recommendation.

LLM Preference Alignment LLM alignment
techniques ensure that models produce outputs
aligned with human preferences and, have inspired
significant advancements beyond general-purposes
tasks such as recommendations. Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) and DPO (Rafailov et al., 2024) sug-
gest fine-tuning based on human preference data.
Building on DPO, methods like IPO (Azar et al.,
2024), CPO (Xu et al., 2024), KTO (Ethayarajh
et al., 2024), SimPO (Meng et al., 2024), and
ODPO (Amini et al., 2024) further refine align-
ment with improved model efficiency and robust-
ness. Most recently, S-DPO adapts alignment for
user-item sequences, optimizing personalization by
comparing with list-wise negative items. We pro-
vide a more detailed related work in Appendix C.



3 Preliminaries

We begin by formalizing the sequential recommen-
dation task within the LM framework. Next, we
outline a two-stage training paradigm that adapts
existing LMs to the recommendation task, includ-
ing supervised fine-tuning (SFT) and preference
alignment. Centering around the alignment stage,
we briefly introduce direct preference optimiza-
tion (DPO) (Rafailov et al., 2024), a technique that
aligns LMs using pairwise preference data; We then
present S-DPO (Chen et al., 2024), a recent adap-
tation of DPO designed specifically for sequential
recommendation.

Sequential Recommendation with LMs. Let
H,, = [i*,i?, ...,V |represent the chronologically
ordered sequence of historical interactions for user
u, where each element i* encapsulates contextual
details of the k-th interaction (e.g., item title, style,
rating), and /V,, denotes the total number of interac-
tions. We define H!, = H,[: t] as as the subset of
interactions up to time ¢, and let i? denote the next
recent favorable (high-rated) item following the
interaction history at ¢. Let g be the LM perform-
ing the task, parameterized by . The sequential
recommendation task within the LM framework is
formulated as follows: given user u’s interaction
history H!, up to time ¢ and a candidate item set
C = {i¥V}E |, where H!,NC = D and i’ € C, the
model 7y is required to predict the item that most

likely be favorable to user, i.e., i;ff.

Supervised Fine-tuning LMs for Sequential Rec-
ommendation. Supervised fine-tuning (Ouyang
et al.,, 2022) (SFT) is widely adopted to
adapt general-purpose LMs to recommendation
tasks (Liao et al., 2024; Bao et al., 2023). Let
x!, be the task prompt that encompasses user u’s
interaction history H!, up to time ¢, the candidate
item set C, and other task-related descriptions. We
define 7. as the textual descriptions of candidate
items in C, and yf, as the text mapping of item
iff € C that best aligns with x!’s description. We
construct the SFT training dataset Dspr using pair-
wise data (x!,, y?), Vu,Vt < N,, and frame the
sequential recommendation as a sentence comple-
tion task. The objective that optimizes 7y is:

+
max E(xaﬁy?)wpsm [logﬂ'g(yf, ’XZ)} ey

The LM fine-tuned with this objective on Dgpr is
denoted as mspr. For brevity, we omit the times-

tamp signs in all subsequent equations unless its
inclusion is essential for clarity.

Aligning LLM with Human Preference Feed-
back. While optimizing the SFT objective effec-
tively adapts LMs to the downstream task, recent
studies indicate that models still struggle to align
outputs with human judgments of quality (Ziegler
et al., 2019; Stiennon et al., 2020; Rafailov et al.,
2024). To address this, a reward model r(x,y) is
introduced to estimate output quality assessed by
humans, aiming to maximize the expected reward.

To train the reward model, a dataset of com-

parisons D = {x(i),yg),yl(i) f\;l is constructed,

where yz(,f) and yl(i) denotes the preferred and dis-
preferred output generated based on x(, respec-
tively. The alignment objective with the learned

reward function is then defined as:
max  Eypyr, (o (706 )]
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where [ is the parameter controlling the devia-
tion from the reference model 7., and wsgr iS
commonly used as the reference model. Based
on Equation 2, a recent work DPO (Rafailov
et al., 2024), employs the Bradley-Terry (Bradley
and Terry, 1952) (BT), P(yw =y |Xx) =
o(r(x,yw) —7(X,¥1)), to express the probabil-
ity of human preference data in terms of the optimal
policy rather than the reward model, they derive
the objective based on pairwise preference data as:
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The above preference modeling paradigm aligns
naturally with recommendation tasks, with both
being preference-based decision-making. Building
upon DPO, a recent effort named S-DPO (Chen
etal., 2024) is proposed to further align LLM-based
recommenders to user preference. They propose
to pair each positive item with multiple negative
items generated by random sampling as preference
data, and revise the alignment objective as:

mein — Ex,yu0,72)~D {log o <— log Z exp(
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where 7; = 7:\ {yp} contains the item titles of
multiple dispreferred items”.

4 Does Comprehensive Preference
Feedback Help?

We design a proof-of-concept experiment to assess
how explicit preference granularity (via user-item
ratings) impacts the next favorable item recommen-
dation. We devise four-tier input configurations
that progressively integrates preference signals: (i)
Filtered Items: Excludes negative-feedback items
and provides no ratings, mimicking S-DPO’s setup;
(ii) Full Items: Retains all historical items but still
provides no ratings; (iii) Filtered Items + Rating:
Provides ratings but excludes negative-feedback
items; (iv) Full Items + Rating: Retains all items
and their corresponding ratings. We fine-tune
LLaMA3-8B on MovieLens and Amazon-Books (
described Section 6.1) using the four input configu-
rations. The experimental results are reported using
Hit Ratio@1 (see Section 6.1, where higher val-
ues indicate better performance) and are shown in
Figure 2. We observe that incorporating more fine-
grained feedback in the form of ratings consistently
improves performance. Although the objective is
to predict probable favorable items, including neg-
atively rated items with ratings in the user history
proves beneficial, as aversion modeling is crucial
for building a more accurate user profile. However,
the Full Items configuration (without ratings) un-
derperforms the Filtered Items configuration, as the
absence of explicit annotations for negative items
introduces noise into the learning process. These
results highlight that explicit ratings help resolve
ambiguity, enabling LL.Ms to differentiate between
preferences and aversions.

5 Methodology

In this section, we first present how we lever-
age user historical interaction data to design the
prompts, establishing the foundation for preference
modeling in recommendations. We then introduce
RecPO, a novel preference optimization framework
for sequential recommendation that dynamically
calibrates reward margins between preferred and
dispreferred items according to their contextualized
user-item relevance. The architectural workflow of
our proposed framework is illustrated in Figure 3.
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Figure 2: Impact of employing ratings and retaining low-
rating items, where ''Filtered Items'' include no rating
signals and remove all low-rating items from historical
sequences, '"Full Items'" keep all historically interacted
items and includes no rating signals,''Filtered Items
+ Rating'' include rating signals but still remove low-
rating items, "'Full Items + Rating'' retain both of them.

5.1 Complete Historical Interactions Enhance
User Profiling

Sequential recommendation aim to predict sub-
sequent preferred items for users based on their
chronological interaction history. While existing
approaches (Liao et al., 2024; Chen et al., 2024)
remove items with negative feedback from interac-
tion histories to construct homogeneous sequences
(i.e., items with only positive feedback), in Sec-
tion 4 we demonstrate that this practice can impair
the fidelity of user preference profiling and induce
performance degradation (see Figure 2), as it dis-
cards critical behavioral signals. In contrast, our
framework preserves the complete interaction se-
quence for each user, explicitly retaining all histor-
ical items along with their associated preference
feedback. We use user-item ratings to represent a
hierarchical structure of preference feedback. Fol-
lowing prior work (Chen et al., 2024), the input
prompts are composed of the following parts:

User historical interaction 7/, Each item in
the user history is formatted as "[ItemTitle] |
Rating: [ItemRating]". For example, "Toy
Story | Rating: 4". All historical items are
concatenated with "\n" being the separator.

Candidate item set C We format all candidate
items in a similar format as the historical items,
except that no rating attributes are provided.

Task Description To facilitate LLM’s under-
standing of user preference and the task, we
prepend the history-specific prefixes (e.g., "Given
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Figure 3: Illustrations for DPO and our framework: DPO assigns static preference margin across pairwise preference
data, while our framework adaptively adjusts preference margin () based on preference difference.

the user’s recent viewing and rating
history") and candidate-specific prefixes (e.g.,
"recommend a movie they’ll likely watch
next and rate generously from following
candidates") to their respective sequences.

We concatenate the above components as the
final textual input x,, to the LMs, with concrete ex-
amples for the constructed prompts in Appendix B.
The ground truth item y, and the negative items
yq € Tgq are the titles of the respective items.

5.2 Adaptive Reward Margin Emulates
Hierarchic Human Preference Difference

Current DPO-based methods, as introduced in Sec-
tion 3, reduce preference modeling to maximizing
the reward difference between pairwise preferred
and dispreferred responses/items. This simplifica-
tion exposes them to two key limitations in rec-
ommendation: (i) Neglecting preference hierarchy,
where in reality, users may strongly prefer certain
items while only slightly preferring others, com-
pared to either the same or different negative items;
(i1) Neglecting the time discounting effect, where
users typically prioritize immediate satisfaction
over delayed rewards. To incorporate both factors
into model preference alignment, inspired by prior
work (Meng et al., 2024; Amini et al., 2024), we
propose an adaptive target reward margin term 7y,
which is dynamically determined by two key ele-
ments: the ratings of the two compared items and
the time elapsed since their interactions relative to
the current timestamp. Specifically, we utilize a
utility function ¢(-) to evaluate the reward of an
item—the higher the rating of an earlier interaction,
the larger the utility. We define the margin of a
pairwise data (y,,yq) as follows:

¢ (8P7 Atp)
¢ (Sda Atd) ’

where y,, is preferred over y,4, A controls the mar-
gin’s magnitude, and Ay, tf — t indicates

Y= 5)

the time latency of the interaction. In this work,
we set ¢ (s,A;) = s/(A)". Note that the
choice of score function is customizable as long
as it reflects the above preference rules. That is,
o (s,Ar) x s/ (Ay)%, where a > 0 indicates the
temporal decay factor. For dispreferred/negative
items from either negative sampling or historical
interactions, no user-assigned ratings are available
and we set a default rating and time latency to fa-
cilitate the training. More details about the default
value can be found in the Section 6.

5.3 Human Preference Alignment

We plug Equation 5 into the BT model to derive
the distribution for pairwise preference data:

P*(yp =ya | xu)

6
o (r (ks yy) =7 (K ya) = 70)

In sequential recommendation, where each pre-
ferred item are paired with multiple dispre-
ferred items, we leverage the Plackett-Luce (PL)
model (Plackett, 1975; Luce, 1959) to generalize
pairwise comparisons to a list-wise ranking frame-
work. Formally, given the prompt z!, encompass-
ing all the historical interactions of user u, a can-
didate set C = {i,} UZ, containing K items (one
preferred item and K — 1 dispreferred items), and
a permutation o representing the predicted ranking
of these candidates based on user preference for the
next item (denote o () as the item ranked at posi-
tion j), the probability of observing the candidates’
preference ranked as [y, (1), Yo (2); - - - s Yo(K)] 18:

oxp (r (%u,¥ow))
S €D (1 (Xus Yo(m)))

P(o | % T) = ]

j=1

)

Finally, we combine Equations 6 and 7 into the
final objective shown in Equation 8. Note that our
method is reduced to S-DPO when A = 0. For
brevity, the detailed derivation process is provided
in Appendix A. By optimizing the derived objec-
tive, we effectively integrate explicit rating signals
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with temporal decay factors to refine the implicit re-
ward mechanism, enabling LLM recommenders to
better learn user preference patterns in real-world
recommendation scenarios.

6 Experiment

6.1 Setup

Datasets. We select four publicly available rep-
resentative recommendation benchmark datasets
for our experiments: (1) MovieLens-1M", sourced
from the MovieLens platform, contains 1 million
ratings from 6,000 users on 4,000 movies; (2)
Amazon-books* is a subset of the Amazon Review
dataset containing 22 million user interactions, re-
views, and ratings for 2 million books from 8 mil-
lion users; (3) Steam® is a dataset of user interac-
tions with games, including game purchases, play-
time, and reviews from the Steam platform; (4)
BeerAdvocate'l collects beer reviews covering mul-
tiple sensory aspects and overall ratings.

For each dataset, we apply k-core filtering (He
and McAuley, 2016) to remove users and items
with less than £ = 5 interactions. We then con-
struct a candidate set of 20 items from which the
model selects. During training, this set is composed
of 10 subsequent interactions (ensuring that the cor-
rect item is always included) and 10 randomly sam-
pled non-interacted items. For validation and test-
ing, the candidate set consists of the correct item
plus 19 randomly sampled non-interacted items.
For ML-1M, Amazon-books, and BeerAdvocate,
we utilize rating feedback to adjust the preference
margin, and for Steam where explicit ratings are un-
available, we instead rely on play-hours as a proxy
for user preferences. For each user, we order the
interactions chronologically, using the second-last
interaction for validation, the last one for testing,
and the rest for training. More details about the
datasets we use are provided in Appendix D.1.
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Baselines. We compare RecPO with two types
of baseline models: (i) Traditional methods lever-
age sequential patterns in user behaviors to pre-
dict the next interacted item, using various model-
ing architectures such as recurrent neural networks
(GRU4Rec (Hidasi, 2016)), convolutional neural
networks (Caser (Tang and Wang, 2018)), or multi-
head self-attention frameworks (SASRec (Kang
and McAuley, 2018)). (ii)) LM-based methods uti-
lize LMs to process historical interactions and pre-
dict the next interacted item. In addition to evalu-
ating the general-purpose LM, LLaMA3 (Dubey
et al., 2024) and the standard preference optimiza-
tion baseline DPO (Rafailov et al., 2024), we in-
clude SimPO (Meng et al., 2024), a reference-free
method that enhances DPO with length regular-
ization and fixed margin term, and S-DPO (Chen
et al., 2024), which adapts DPO for specically for
sequential recommendation. More details about
the baselines are provided in Appendix D.2.

Implementation. All experiments were per-
formed on no more than 8§ NVIDIA RTX A6000
with 48GB of VRAM. For our method and all the
other preference learning approaches, we first con-
duct SFT adapt them to the recommendation task.
Then in alignment, models were initialized from
SFT checkpoints and optimized using the align-
ment loss defined in Equation 8. More implemen-
tation details are provided in Appendix D.3.

Evaluation Metrics. We follow S-DPO to eval-
uate the models using two metrics: Hit Ratio@1,
which quantifies recommendation accuracy as the
proportion of test cases where the model’s top-
ranked prediction matches the ground-truth next
interacted item, and Valid Ratio, which measures
instruction compliance by calculating the propor-
tion of recommendations that adhere to formatting
guidelines and belong to the predefined candidate
set. The latter ensures the model avoids generating
out-of-distribution or irrelevant items. Together,
these metrics holistically assess both the precision
of recommendations and their alignment with prac-
tical deployment constraints.
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Method MovieLens Amzon-Books Steam BeerAdvocate
1% | HR@1 ValidRatio | HR@1 ValidRatio | HR@1  ValidRatio | HR@1  ValidRatio

GRU4Rec | 0.2664  1.0000 | 0.1310 ~ 1.0000 | 0.4584 ~ 1.0000 | 0.3708  1.0000

Tranditional ~ Caser | 02714  1.0000 | 0.1538  1.0000 | 04394  1.0000 | 03757  1.0000
SASRec | 0.2671 ~ 1.0000 | 0.1559 ~ 1.0000 | 0.4587 ~ 1.0000 | 0.3800  1.0000

LLaMA3 | 0.0929 07351 | 0.0654  0.6165 |0.0852  0.8672 | 0.0686  0.6617

SFT | 02478 09985 | 04447 09974 | 03122 09990 |0.2645  0.9936

LIM.based DPPO | 02809 09970 | 05049 ~ 09887 | 03340 09980 | 04412  0.9875
SimPO | 02974 09725 | 05129  0.9564 | 0.3401 09766 | 04020  0.9250

S-DPO | 02902  0.9983 | 05065  0.9880 | 0.3588  0.9990 | 0.4698  0.9903

Ours RecPO | 0.3451  0.9969 | 0.5802 09851 | 0.4672 09985 | 0.5771  0.9887

Table 1: Overall model performance comparison on four real-world recommendation datasets. Hit Ratio@1 and
Valid Ratio are reported, the best performance is bolded and runner-ups are underlined.

6.2 Main Results and Ablations

Overall Performance. Table | compares RecPO
with the baselines across four sequential recom-
mendation datasets, revealing three key findings:
(i) SFT bridges the gap between LLMs and rec-
ommendation constraints. While LLMs (e.g.,
LLaMA 3) possess open-world knowledge, their
raw outputs often violate practical requirements
(e.g., recommending non-candidate items or ex-
ceeding item limits). SFT significantly improves
valid output rates, achieving parity with tradi-
tional recommenders, demonstrating the necessity
to align general-purpose LLLMs with structural and
behavioral requirements of real-world recommen-
dation applications; (ii) Preference optimization
further unlocks the potential of LLMs in recom-
mendation. All preference learning methods, in-
cluding our proposed RecPO, DPO, SimPO, and S-
DPO, significantly outperform SFT in Hit Ratio@1,
suggesting the alignment between preference opti-
mization and ranking-centric recommendation ob-
jectives. Notably, RecPO and S-DPO surpass the
standard DPO, demonstrating that multi-negative
preference learning better captures nuanced user
preference patterns in recommendation scenarios.
Although SimPO achieves impressive improvement
in Hit Ratio@1, it exhibits a noticeable degradation
in Valid Ratio compared to other approaches, which
highlights the limitations of reference-free opti-
mization in mitigating distributional discrepancies
between recommendation tasks and general NLP
tasks; (iii) RecPO achieves SOTA results across all
benchmarks. By integrating explicit ratings with
adaptive reward margins, RecPO improves Hit Ra-
tio@1 by 13.12% to 30.21% over other LLM-based
approaches. We attribute this to its human-aligned
preference modeling grounded in cognitive science

Dataset | Log Diff | Log Ratio | RecPO
MovieLens 0.3160 0.3247 0.3451
Amazon-Books | 0.5370 0.5455 0.5802
Steam 0.4284 0.4517 0.4672
BeerAdvocate | 0.5023 0.5257 0.5771

Table 2: Ablation study on the margin term function,
Hit Ratio@1 is reported for comparison.

principles. While RecPO also outperforms all the
traditional recommenders, its performance gain on
the Steam dataset is relatively small. We posit that
the narrower performance gap stems from the play-
hour-derived ratings, demonstrating homogeneous
interaction patterns that traditional models with
simple structures can still capture.

Ablation Study on Margin Functions. We de-
note ¢, and ¢, as the scores for the preferred and
dispreferred items respectively for brevity. By de-
fault, RecPO defines the margin term -y, as the ratio
of preference scores ¢ between positive and neg-
ative item pairs, as formalized in Equation 5. To
evaluate the impact of this design choice, we in-
troduce two alternative margin functions: (i) Log
Diff, v = Alog (¢p — ¢a); (ii) Log Ratio, vy, =
A (log ¢ —log ¢gq). As shown in Table ??, both
variants outperform the strongest LLM-based rec-
ommender baseline, confirming the general utility
of margin-aware optimization. However, RecPO ’s
default margin formulation achieves superior per-
formance across all datasets. This advantage arises
because the default ratio-based margin amplifies
gradients during training, particularly when histori-
cal user ratings exhibit low volatility. By directly
contrasting ¢, and ¢4 through division, the model
receives stronger learning signals to prioritize sub-
tle yet critical preference patterns.
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Figure 4: Comparative analysis of SFT, S-DPO, and RecPO: (a) Context-aware user preference adherence, (b)
Unfavorable item recommendation avoidance, and (c) Robustness across varying user history lengths.

6.3 In-depth Preference Alignment Analysis

RecPO adheres to contextualized preferences.
To assess RecPO ’s ability to leverage contextual-
ized user preferences for next-item recommenda-
tions, we construct test sets from MovieLens and
Amazon-Books in which candidate sets include
multiple high-rated items from users’ subsequent
interactions, and follow the rules in Section 3 to dis-
tinguish positive and negative candidates. Specifi-
cally, we use Adherence Rate (see Appendix D.4)
to measure the model effectiveness in adhering to
contextualized user preferences by recommending
the immediate high-rated item for the next interac-
tion. As shown in Figure 4(a), RecPO consistently
outperforms SFT and S-DPO in ranking the im-
mediately next high-rated item above temporally
distant ones, demonstrating its enhanced capac-
ity to model contextualized user intent and deliver
timely recommendations. In contrast, S-DPO fails
to consistently outperform SFT, indicating devia-
tions from true preference hierarchy. These results
suggest that RecPO ’s adaptive reward margins en-
able recommendations closely adhere to human
preference hierarchy.

RecPO avoids undesirable recommendations.
Beyond modeling contextualized user preferences,
we further evaluate the model’s ability to avoid
recommending low-rated items. For this analy-
sis, we construct test sets from the MovieLens
and Steam datasets by augmenting candidate sets
with low-rated items from users’ subsequent inter-
actions. Similarly, we use Avoidance Rate (see
Appendix D.4) to assess the model’s effectiveness
in avoiding the recommendations of unfavorable
(unsatisfactory) items for the next interaction. As
shown in Figure 4(b), RecPO consistently achieves
the highest low-rated item avoidance rates across
benchmarks, outperforming all baselines. These re-

sults suggest that incorporating explicit ratings for
more comprehensive preference feedback simulta-
neously captures patterns for both desirable and un-
desirable items. As a result, RecPO minimizes the
risk of recommending irrelevant or disliked items,
a crucial factor in sustaining user engagement.

RecPO is robust to variations in user sequence
length. In Figure 4(c), we investigate RecPO ’s
robustness to variations in historical interaction
lengths using the BeerAdvocate dataset. For this
analysis, we partition the test set into subsets cat-
egorized by the length of historical interactions
and evaluate the performance per subset. RecPO
exhibits sustained efficacy, delivering larger perfor-
mance margins over SFT than S-DPO across all
length groups. While all three methods follow anal-
ogous performance trajectories as history length
increases, RecPO maintains the most stable results,
evidenced by the lowest variance in Hit Ratio@1
scores (8.7% vs. 17.8% for S-DPO). This observa-
tion shows RecPO ’s superior adaptability to vary-
ing context lengths—a critical trait for real-world
systems with inherently dynamic user interactions.

7 Conclusion

In this paper, we investigate the problem of align-
ing recommendation objectives with human cogni-
tive processes by proposing RecPO, a novel pref-
erence optimization algorithm designed to instill
nuanced user preference patterns into LLM-based
recommenders. Our approach leverages more com-
prehensive preference feedback, and features an
adaptive reward margin mechanism that dynam-
ically calibrates the relative preference between
positive and negative item pairs, leveraging explicit
rating signals and interaction latency to capture
fine-grained, context-aware user preferences. Ex-
tensive experiments across multiple benchmarks



demonstrate that RecPO outperforms state-of-the-
art methods, achieving performance improvements
ranging from 13.12% to 30.21%, while exhibiting
superior adherence to contextualized preferences
and a reduced retrieval rate for unfavorable items.

Limitations

While we demonstrate that incorporating more
comprehensive interaction feedback improves user
profiling, this work focuses solely on ratings as the
key factor for modeling preference hierarchy. In
real-world platforms, other user interaction signals
(e.g., clicks, reviews, session duration) can provide
additional insights into user cognitive behaviors
and enhance preference-based decision-making.
Although our results show improved recommen-
dation performance and alignment with human per-
spectives, further studies are needed to evaluate the
model’s user profiling capabilities beyond a sin-
gle metric. Emulating human cognitive behaviors
should extend beyond predicting the most likely in-
teracted item toward modeling broader, more com-
plex user behavior within the system.
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A Derivation of Preference Distribution

In the standard Bradley-Terry model, the probabil-
ity that candidate ¢ beats candidates j is

Plyi = y;) = 0 (r (%) (x.31)
) exp (r (x..y1)) ©)
5D (7 (xu ¥2)) + 0xp (1 ( ¥0))

We will only use w; to represent the candidate-
specific probability exp (7 (X4, y;)) in subsequent
equations for brevity. Now suppose we wish to
include a margin term ;;, then we can define the
pairwise probability as

w; exp (—7ij)
w; exp (—7ij) + wj

P(y; = y;) = (10)

where we assume v;; = —7;;. Specifically, we
can use the Plackett-Luce model decomposes a
ranking 1 > 49 > i > --- > i) into sequential
choices competition. Therefore, at each step ¢, the
wining (got selected) probability ¢y, is proportional
to its weight, i.e., wi = exp (r (Xy,yx)). Now the
added margin term -y;; modifies the competition by
giving each candidate an extra boost (or penalty)
when facing an opponent. In other words, when
candidate ¢ competes against candidate j (within
the remaining set) its effective strength is boosted
by the factor exp(—+;;). Then, by an extension of
Luce’s choice axiom, we can get the probability of
choosing candidate ¢ from the set C is proportional
to its effective weight:

P(i chosen from C) =
w; eXp (— ngc\{i} ’Yij)
>_kec Wk €Xp (* ZjeC\{k} ij)

(11

Leto = (0(1),0(2),...,0(K)) be a full ranking
of K candidates. We construct the ranking sequen-
tially. At step r, let

Cr=C\{o(1),0(2),...,0(r—1)} (12)

be the remaining set. Then the probability that
candidate o (r) is selected at step r will be,

P(o(r) | o(1),...,0(r—1)) =
Wo .y €XP (i Zjecr\{a(r)} /YU(T)j)
2 kec, Wog XP (_ 2 jec\{k} W)

(13)

We can thereby get the likelihood of the full ranking
by the chain rule,

Plo|C) =

Ii_f Wo,, €XP <— 2 jec\{o(r)} %(r)j) (14)
r=1 2_pec, Woy €XP (_ 2 jec\{k} Wi )

In the recommendation setting we are especially
interested in penalizing the positive item’s “win”
relative to each negative, which means one might
only apply a margin from the positive item to each
negative. Therefore, we can derive the preference
distribution of recommendation case given interac-
tions x,, of user u, multiple negative items y4 € 7Ty

and the positive item y:

P(Yp > ZYd7VYd 6 7:1 ’ XuaYp77:i) -
Wp €XPp (‘ ZgK:_ll 'Yp,dj>

K—1 K—-1 )
Wy €XP <_ Zj:l 'Yp,dj) + Z]‘:l Wd,;

(15)

Notably, the ranking likelihood would reduce to the
standard Plackett—Luce model if the margin term
~ = 0 for all pairs.

B Prompt Examples

We refer to the prompts used in previous
works (Chen et al., 2024; Liao et al., 2024) to build
the prompt examples in Figure 5 for recommenda-
tion preference data generation.

C Related Work

Sequential Recommendation. Sequential rec-
ommendation aims to model user preferences
by capturing temporal patterns in interaction se-
quences. Early approaches, such as GRU4Rec (Hi-
dasi, 2016), leveraged recurrent neural networks
(RNNs) to encode sequential dependencies, while
SASRec (Kang and McAuley, 2018) introduced
self-attention mechanisms to better capture long-
range dependencies. Convolutional-based meth-
ods like Caser (Chang et al., 2021) explored local
patterns in sequences using convolutional filters.
Recent state-of-the-art methods have further ad-
vanced the field by incorporating graph-based struc-
tures (Yu et al., 2020), contrastive learning (Xie
et al., 2022; Chen et al., 2022), and hybrid architec-
tures (Li et al., 2020; Zhou et al., 2020; Fan et al.,
2021) for improved accuracy and robustness.



Amazon-books

Context

Leverage the user's book reading and rating (scale from 1 to 5,
5 is highest) history (formatted: [BookTitle] | Rating:
[BookRating]),

User History H,,

A Slipping-Down Life | Rating: 5
Dreaming: Hard Luck and Good Times in America | Rating: 5

The Art of Racing in the Rain | Rating: 5

Task Description

predict their next highly-rated (4 to 5) choice from these
candidates:

Candidate Set C

Rhett Butler's People
The Right Hand

gmoke, Mirrors, and Murder: And Other True Cases
Answer:

Movielens

Context

Analyzing the user's logged movie viewing and rating records
(format: [MovieTitle] | Rating: [MovieRating]),

User History H,,

The Third Man | Rating: 5
The Big Sleep | Rating: 5

Easablanca | Rating: 5

Task Description
select the title they'd most likely watch next and highly rate (4
to 5) from following candidates:

Candidate Set C

Short Cuts
A Clockwork Orange

The Nutty Professor
Answer:

Figure 5: Textual prompt examples for Amazon-books
and MovieLens.

LLMs for Recommendation. The integration of
LLMs into sequential recommendation has gained
momentum due to their ability to leverage rich se-
mantic knowledge and contextual understanding.
LLMs are typically integrated by encoding item
descriptions, user reviews, or interaction histories
as textual inputs, enabling the model to capture
nuanced item characteristics and user preferences.
For instance, LLaRA (Liao et al., 2024) employs
classical sequential recommender systems to gen-
erate item embeddings, which are then fused with
sequential interaction data to improve recommen-
dation accuracy. TALLRec (Bao et al., 2023) fine-
tunes LLMs on user-item interaction sequences,
treating recommendations as a text generation task
to predict the next item. Other approaches tackles
the task from prompting (Geng et al., 2022; Gao
et al., 2023; Lyu et al., 2023) or multi-modal data
exploitation (Yuan et al., 2023). These methods
demonstrate the potential of LLMs to bridge the

Dataset # Sequence | # Items | # Interactions
MovieLens 6,040 3,952 994,169
Amazon-Books 5,103 38,203 62,290
Steam 3,171 4,251 82,072
BeerAdvocate 4,724 6,105 91,207

Table 3: Statistics of datasets

gap between natural language understanding and
sequential recommendation, enabling more inter-
pretable and context-aware recommendations.

LLM Alignment. LLM alignment techniques
aim to align general-purpose LMs’ outputs with
human preferences, ensuring that generated con-
tent is both useful and safe. While not specifically
designed for recommendation tasks, these methods
have inspired advancements in preference model-
ing. Early approaches like Reinforcement Learn-
ing from Human Feedback (RLHF) (Ouyang et al.,
2022) and Proximal Policy Optimization (Schul-
man et al., 2017) laid the foundation by using re-
inforcement learning to fine-tune models based
on human feedback. DPO (Rafailov et al., 2024)
emerged as a simpler and more efficient alternative,
directly optimizing preference data without requir-
ing explicit reward modeling. Building on DPO,
methods like IPO (Azar et al., 2024), CPO (Xu
et al.,, 2024), KTO (Ethayarajh et al., 2024),
SimPO (Meng et al., 2024), and ODPO (Amini
et al., 2024) further refine alignment by addressing
limitations such as capturing fine-grained prefer-
ence hierarchies, reducing reward hacking, improv-
ing robustness to noisy feedback, and enhancing
generalization across diverse user contexts. Most
recently, S-DPO (Chen et al., 2024) adapts align-
ment techniques specifically for recommendation
tasks, focusing on sequential user preferences and
improving the personalization of LLM-based rec-
ommenders.

D Experimental Settings
D.1 Datasets

We use four widely used real-world sequential
recommendation datasets for evaluation, includ-
ing MovieLens-1M I, Amazon-books**, Steam'" and
BeerAdvocate™. We demonstrate the dataset statis-
tics in Table 3. The MovieLens-1M dataset is
sourced from the MovieLens platform and con-

! https://grouplens.org/datasets/movielens/1m/
ihk https://nijianmo.github.io/amazon/index.html
¥ https://github.com/kang205/SASRec
¥ https://cseweb.ucsd.edu/~jmcauley/datasets.html#multi_aspect
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tains 1 million ratings from 6,000 users on 4,000
movies. The Amazon-Books dataset is a subset of
the Amazon Review dataset and comprises 22 mil-
lion user interactions, reviews, and ratings for 2 mil-
lion books from 8 million users. The Steam dataset
includes user interactions with games—such as
purchases, playtime, and reviews—from the Steam
platform, while the BeerAdvocate dataset collects
beer reviews that cover multiple sensory aspects
along with overall ratings. For each dataset, we
filter out items and users with fewer than 20 in-
teractions. To prevent information leakage during
training and evaluation, we adopt the leave-last-two
splitting method to divide the datasets into training,
validation, and test sets. We build a candidate set
of 20 items for each user sequence, from which the
model selects the next item. During training, this
set comprises 10 subsequent interactions (ensuring
that the correct item is always included) and 10
randomly sampled non-interacted items. For val-
idation and testing, the candidate set consists of
the correct item plus 19 randomly sampled non-
interacted items. To align with the task objective
of recommending the most likely favorable item
as the next interaction, we follow classical sequen-
tial recommendation settings by considering only
highly rated items (ratings 4 to 5 on a scale of 1 to
5) from subsequent interactions as the positive item
(i.e., the correct answer) (Li et al., 2024). The same
process is applied to the validation and test sets;
we only retain user sequences whose next item is
highly rated. Meanwhile, we preserve all histori-
cal interactions and their corresponding ratings in
the user history sequence for comprehensive user
profiling. Since the Steam dataset lacks explicit rat-
ing signals, we use user play-hours as an implicit
rating and convert it to a 1-to-5 scale based on its
percentile ranking. For example, if a user’s play-
time for a game falls within the top 20% compared
to other players, the corresponding user-item pair
is assigned a rating of 5.

D.2 Baselines

We include the following baseline models for per-
formance comparison:

¢ GRU4Rec (Hidasi, 2016) is a recurrent neural
network-based model that captures sequential
patterns in user interaction sequences session-
based recommendation.

e Caser (Tang and Wang, 2018) is a convolu-
tional neural network-based model that learns

both local and sequential patterns in user-item
interactions using convolutional filters.

* SASRec (Kang and McAuley, 2018)is a
transformer-based model that leverages self-
attention to capture long-range dependencies
and dynamic user preferences in sequential
recommendation.

* LLaMA-3 (Dubey et al., 2024) is a general-
purpose LLM with strong semantic reasoning
capabilities. We adapt it to sequential recom-
mendation by treating it as a text prediction
problem.

* DPO (Rafailov et al., 2024) is a preference
alignment technique that fine-tunes models
using pairwise preference data. In this work,
we construct preference data based on explicit
preference feedback.

* SimPO (Meng et al., 2024) is an extension of
DPO that directly optimizes pairwise prefer-
ences without requiring explicit reward mod-
els or complex sampling strategies for im-
proved efficiency and scalability.

¢ S-DPO (Chen et al., 2024) is a variant of
DPO specifically adapted for sequential rec-
ommendation that incorporates list-wise nega-
tive items in preference alignment.

D.3 Implementation Details

All experiments were conducted on a maximum of
8 NVIDIA RTX A6000 GPUs, each with 48GB
of VRAM. Our framework is implemented using
Python 3.10.6, PyTorch 2.2.2, and Huggingface
Transformers 4.43.3. For all LLM-based recom-
menders, we employ LLaMA 3.1 8B (Dubey et al.,
2024) as the base model for both SFT and align-
ment. During training, we set the learning rate to
le-5 for all LLM-based recommenders and use the
AdamW optimizer. Additionally, we apply a 5%
warm-up strategy and adjust the learning rate us-
ing a cosine scheduler. A global batch size of 128
is used to balance training efficiency and memory
consumption. The maximum sequence length is tai-
lored to each dataset based on the features involved
and the average title lengths. We set 5 = 1 for
all preference optimization approaches. For multi-
negative preference learning, including S-DPO and
our proposed RecPO, we adopt the S-DPO settings
and fix the number of negatives at 3. In particular,
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Figure 6: Sensitivity analysis of the margin parameter A on recommendation performance: (a) Hit Ratio@1 and (b)
Valid Ratio across MovieLens and Amazon-Books datasets.

we set the margin term in SimPO as 2 and set the
parameter A in our method as 2. Finally, follow-
ing the prompt format provided in Appendix B, we
create several additional prompt templates and ran-
domly sample one for each user sequence during
training and evaluation to ensure model flexibility
and generality. For all traditional recommenders,
we follow the settings from previous work (Chen
et al., 2024) by setting the learning rate to 0.001,
the batch size to 256, and using the Adam optimizer
for model optimization.

D.4 Evaluation Metrics

As mentioned in Section 6.1, we primarily em-
ploy two metrics to evaluate model effectiveness:
Hit Ratio@1, which measures how accurately the
model recommends the correct item, and Valid
Ratio, which assesses whether the model follows
instructions to generate outputs in the required
format. In Section 6.3, we introduce two addi-
tional metrics—Adherence Rate and Avoidance
Rate—both derived from Hit Ratio@1. These met-
rics evaluate the model’s ability to adhere to con-
textualized user preferences and avoid recommend-
ing unfavorable (unsatisfactory) items for the next
interaction, with higher values indicating better
performance. In our main experiment, the candi-
date sets during testing include the last item from
the user’s full sequence—typically a highly rated
item (rating 4 to 5 on a scale of 1 to 5)—with the
remaining candidates randomly sampled from the
non-interacted set. In the contextualized preference
adherence experiment, the candidate set for testing
includes at least two high-rated items from the sub-

sequent sequence. We follow the rule described in
Section 3 to designate the positive item as the one
with the smallest time latency A; relative to the
prediction timestamp t. A high Adherence Rate
indicates that the model consistently recommends
the positive item among all high-rated candidates.
For the unfavorable item avoidance experiment, we
construct the test set by selecting user sequences
where the last interaction is low-rated (rating 1 to
2). Instead of measuring whether the model rec-
ommends this low-rated item, we assess whether it
favors the randomly sampled candidates over the
unfavorable item. Thus, a high Avoidance Rate
signifies that the model successfully avoids recom-
mending unfavorable items to users.

E Analysis on Margin Magnitude

As detailed in Section 5, the parameter A controls
the influence extent of the margin term -y, on pref-
erence learning. We adopt A = 2 as the default
value to balance Hit Ratio@1 (recommendation
accuracy) and Valid Ratio (instruction-following
capability). To further study the impact of A on
model effectiveness, we conduct sensitivity analy-
ses on MovieLens and Amazon-Books, with results
visualized in Figure 6. Increasing A consistently
elevates Hit Ratio@ 1, though the rate of improve-
ment diminishes at higher values (e.g., A = 3).
However, excessively large A values degrade the
Valid Ratio, which quantifies the model’s adher-
ence to user instructions. While Hit Ratio@]1 re-
flects recommendation accuracy, maintaining a ro-
bust Valid Ratio ensures alignment with user intent.
We recommend A ~ 2 to harmonize both metrics.
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