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Abstract—Integrating graph knowledge to collaborative fil-
tering (CF) has been proven effective in improving recom-
mendation performance. However, how to leverage graphs to
click-through rate (CTR) prediction, where contextual (e.g.,
user/item/interaction) features are available, remains far less
explored. To bridge this gap, we first demonstrate that in-
corporating graphs to train CTR methods improves the rec-
ommendation as well, evaluated by both the predictive and
ranking-based metrics. Notably, while the improvement is evi-
dent, the substantial computational overheads entailed by graphs
are prohibitively expensive for real-world recommendations. In
light of this, we propose TagCTR, a test-time augmentation
strategy that utilizes graphs only once during testing time to
improve the performance of CTR models. The key philosophy
is to utilize structural knowledge hidden in graphs on-the-fly
during testing while circumventing the notorious computational
overheads of message passing during training. TagCTR can be
used as a plug-and-play module and easily employed to enhance
the ranking ability of various CTR methods with significantly
reduced computational overhead. We conduct comprehensive
experiments across four benchmark datasets with varying levels
of sparsity. Across all datasets, we demonstrate that TagCTR
yields noticeable improvements (i.e., 8.1% on average) during
testing time with little to no additional computational overheads
(i.e., 0.5% on average).

Index Terms—Recommender Systems, Efficient Machine
Learning Systems, Test-Time Augmentation

I. INTRODUCTION

Recommender systems are ubiquitous in online applica-
tions and have redefined user experiences in product recom-
mendation on e-Commerce platforms [1], [2], personalized
advertising [3], [4], and friend recommendation on social
media platforms [5]–[7]. Collaborative filtering (CF) is a
technique that leverages user-item interactions or preferences
(e.g., click, ratings, etc.) to suggest items of interest based
on similar user behaviors [8]–[10]. Most of the CF methods
learn the ranking prediction task, aiming to learn the user-
item similarities so that more relevant items will be ranked
at the top of the list. Traditional CF methods are mainly
based on matrix factorization [8], [9]. These methods usually
assign learnable ID embeddings to all users and items and
utilize them to reconstruct interactions between. In comparison
with CF, click-through rate (CTR) models leverage additional
contextual features including user features (e.g., demographic
information), item features (e.g., item descriptions), or in-
teraction features (e.g., transaction timestamp) [11]–[13] to

predict the interaction probability between the users and items.
These methods pay extra attention to the variability of user
preferences for items across different contexts in which they
interact with the system and are commonly evaluated by
predictive metrics such as AUC and logloss.

Recently, graph neural networks (GNNs) have demonstrated
competitive performance for graph-structured data and further
inspired a series of research to conduct modeling over the bi-
partite user-item graphs that broadly exist in recommender sys-
tems [14]–[16]. Specifically, GNNs complement CF methods
with the message-passing mechanism to capture high-order
relational patterns among users and items. Graph-enhanced CF
methods can significantly improve the recommendation perfor-
mance by up to ∼40%, compared with traditional CF methods
without graphs [14]. However, the exploitation of graphs to
CTR prediction where contextual features are incorporated,
remains far less explored.

To incorporate graphs into CTR prediction, a recent
work [17], denoted as graph convolution machine (GCM),
directly utilizes a vanilla GNN to conduct message passing
over the user-item bipartite graph, where each user/item node
is attached with its corresponding features and each edge is
attached with its contextual features of the interaction. Al-
though GCM significantly improves the recommendation per-
formance, it entails several issues that hinder it from being ap-
plied to industrial applications. Firstly, GCM is prohibitively
expensive to train in distributed machine learning infrastruc-
tures that most real-world industrial applications utilize. In
these scenarios, billions of users and items co-exist and their
corresponding ID embeddings are usually distributed across
multiple machines. GCM requires repetitive message passings
over the user-item bipartite graph during the model training.
Hence, training over a single pair of user and item entails
multiple queries (quadratic to the training batch size) of their
neighbors’ embeddings, which incur tremendous overhead due
to the limited communication bandwidth between distributed
machines. This quadratic computational complexity can be
further aggravated by the fact that such an expensive operation
is repeatedly executed at each training step. Furthermore,
applying GCM into existing context-aware recommender sys-
tems requires tremendous engineering efforts to support
large-scale graph machine learning. Because existing industrial
pipelines mostly explore deep models (e.g., DCN [13]) that



take i.i.d. tabular data as input, which is intrinsically different
from non-i.i.d. graph data. It would be desirable if there exists
a strategy that effectively injects graph knowledge yet can
be easily extended to recommender systems that are well-
established in existing industrial pipelines. To leverage these
aforementioned challenges, we aim to answer:

How can we efficiently yet effectively incorporate graph
knowledge into CTR methods?

To bridge the above research gap, our study begins by first
validating the beneficial synergy between contextual features
and graph knowledge in an existing prevalent CTR method.
For proof-of-concept purposes, we first design a toy example
by substituting vanilla embedding tables for users and items
with a simple graph-based encoder which conducts message
passing over the user-item bipartite graph. In addition to the
traditional predictive metric (i.e., AUC), we also evaluate the
toy example’s ranking ability via the ranking-based metrics
(i.e., NDCG and recall). Experimental results show that the
resultant toy example brings noticeable improvements in the
recommendation performance over four benchmark datasets
with significantly increased computational resource utilization.
This is because the toy example requires repetitive message
passings over the bipartite graph during the model training.
Besides, while the toy example is applicable to a broad range
of methods, it requires model re-training and infrastructural
modifications, which also hinders its applicability.

To address these issues, our solution diverges from the
conventional practice of incorporating graphs during the train-
ing phase. We propose TagCTR, a test-time augmentation
strategy that utilizes graphs only once during testing time to
significantly improve the ranking abilities of CTR models. We
emphasize that this improvement is essential, as prior CTR
models are primarily evaluated under binary classification.
However, the fundamental objective for a human-centered
experience in recommendation is to perform a ranking task:
in practice, CTR models are extensively used as ranking
mechanisms to rank items that have been recalled, aligning
closely with their core operational use. Since our proposed
TagCTR is applied only at testing time, it can be employed
to enhance various CTR methods with fractional extra com-
putational overheads. Specifically, given a well-trained target
CTR method, to predict the interaction between a user and an
item, TagCTR first acquires a set of candidate users and items,
following our graph-based heuristics curated. Then, TagCTR
constructs a new set of user-item pairs based on the candidates
and queries the target CTR method to obtain the predicted
results over the new set. Lastly, through a simple weighted
aggregation, TagCTR combines the predicted results as the
final prediction. Through this simple yet effective scheme,
TagCTR can significantly improve the ranking ability of
the target CTR method while introducing minimal additional
overheads to the overall pipeline. Our main contributions can
be summarized as:
• We incorporate a graph encoder to a typical CTR method

during training, to empirically validate the beneficial syn-

ergy between contextual features and graphs from both the
predictive and ranking perspectives.

• We propose TagCTR, a test-time augmentation strategy that
uses graphs only once during the testing time to improve the
ranking abilities of the CTR models. TagCTR effectively
utilizes graph knowledge while circumventing notorious
computational overheads of message passing during the
training. It can be used as a plug-and-play module and
easily applied to any CTR methods with extremely simple
implementation.

• Comprehensive experiments across four benchmark datasets
with varying levels of sparsity are conducted. Across all
datasets, we demonstrate that TagCTR yields noticeable
improvements on ranking (i.e., 8.1% on average) during
testing time with little to no additional computational over-
heads (i.e., 0.5% on average). Furthermore, TagCTR can be
applied to a broad range of CTR methods (i.e., seven state-
of-the-art CTR methods in our experiments) and consistently
improve their ranking capabilities.

II. RELATED WORK

Collaborative Filtering. As a prevalent technique that is
widely employed in modern recommender systems, collabora-
tive filtering (CF) makes recommendations based on the idea
that similar users tend to have similar preferences [18]. Tra-
ditional CF methods aim to reconstruct user-item interactions
with parameterized user and item embeddings. They model
the reconstruction as a matrix factorization process with the
user and item ID embeddings [8], [19], [20]. Besides, some
other methods maintain the ID embeddings and adopt neural
networks to enhance the interaction modeling in between [11],
[21]. Apart from improving the interaction modeling, other
recent works focus on refining other aspects such as the
objectives and learning paradigms for performance enhance-
ment [9], [22]–[24]. For example, ENMF [22] introduces an
efficient methodology for optimizing the mean squared error
(MSE) loss across the entire dataset. DirectAU [9] measures
representation quality in CF from the perspective of alignment
and uniformity. They optimize the two corresponding losses
to enforce the properties and improve the performance.

Graph-based Collaborative Filtering. Apart from signals
from direct interactions, high-order CF signals in the user-item
bipartite graph are crucial for personalized recommendation
as well. These signals can be captured by the graph convolu-
tion operation in most graph neural networks (GNNs) [25]–
[27]. Prior efforts adopt GCN [25] to the user-item inter-
action graph [14], [28], [29] to capture CF signals in the
neighborhood. Later on, LightGCN [15] simplifies the graph
convolution in GCN by preserving only linear neighborhood
aggregation. In addition to improving the structure of GNNs,
recent works [16], [30]–[33] enforce contrastive learning
constraints in training the models for improved performance.
For example, SGL [30] performs classical graph augmentation
to the original bipartite graph to reinforce node representation
learning via self-discrimination. SimGCL [16] refines the



graph augmentation strategy in SGL with the perturbation of
uniform noises and contrasts between the two perturbed graph
views. NCL [31] explicitly incorporates potential neighbors
into constructing contrastive pairs, and defines a structure-
contrastive objective to optimize.

Click-through Rate Prediction. The problem of click-
through rate (CTR) prediction is defined as predicting the
interaction likelihood between a user and an item given the
user ID, item ID, and optional context features as input.
The incorporated contextual information includes user de-
mographic features, item description, interaction timestamps,
etc. These features additionally consider the variability of
user preferences for items across different contexts in which
they interact with the system. Early works in CTR seek
efficient interactions between the interaction and the contex-
tual information. They preserve low-order feature interactions
through the prominent Factorization Machines [34] and seek
high-order feature interactions through deep neural networks
(DNNs) [11], [12], [35]. Later works modify the layer design
within a deep neural network to automatically learn bounded-
degree feature interactions [1], [13]. Some recent studies
project the features to other predefined hyperspace [36], [37]
for more efficient and complex feature interactions.

Our strategy follows the the paradigm for CTR prediction
methods and exploits graph knowledge to the models for
performance enhancement. Unlike graph-based CF methods
which incorporate graph knowledge in training, our strategy
simply modifies the inference process during test time. This
utilization of graph connectivity differs from graph-based CF
methods in completely excluding the user-item interaction
graph from the training phase.

III. ENHANCING CTR PREDICTION WITH GRAPHS

We first introduce CTR models without conventional graph
usage and demonstrate a graph-based encoder that enhances
their performance during training, from both the predictive
and ranking aspects. However, the significant computational
overhead (up to ∼1000% increase) limits its practicality in
industry. To address this, we propose TagCTR, a test-time
augmentation strategy that utilizes graphs only during testing,
effectively leveraging graph knowledge while avoiding the
training’s computational overhead. We detail our proposed
TagCTR in Section III-D.

A. The Paradigm of CTR Prediction

Formally, we denote the IDs of user i and item j as xi

and xj respectively, and the context features of the interaction
between as cij ∈ Rdc

, where dc refers to the dimension of the
contextual feature. Let the encoder of user/item IDs be f(·) :
R → Rd, where d refers to the latent dimension of the encoded
ID embeddings, and the contextual feature encoder be h(·) :
Rdc → Rd′

, where d′ is the dimension of encoded contextual
embeddings. The paradigm of performing CTR prediction is
outlined in Figure 1 (c). To predict the probability of user i

and item j having an interaction, the input zij ∈ R2d+d′
to a

CTR model is defined as:

zi = f(xi), zj = f(xj), zcij = h(cij), (1)

zij =
[
zi ∥ zj ∥ zcij

]
, (2)

where ∥ refers to the concatenation operation, zi and zj refer
to the latent ID embeddings of user i and item j generated by
the encoder respectively, and zcij is the encoded contextual fea-
tures. We depict this table embedding mechanism in Figure 1
(a). The three components of the input are then concatenated
as the final input to the model, as depicted in Figure 1(c).

The traditional encoder f(·) in CTR models is a look-up
table encoder, where f(xi) is the xi-th entry in a matrix
E ∈ R(|U|+|I|)×d, U is the user set and I is the item set. We
depict the table encoder in Figure 1(a). With the encoded em-
beddings, each CTR model than adopt a corresponding rating
function r(·) : R2d+d′ → R to predict the interaction likehood.
Specifically, we let pij = r(zij), where pij represents how
likely user i would click/interact with item j.

To showcase the learning scheme of CTR prediction, we
here demonstrate the modeling process of DCN [1], one of the
most typical CTR models broadly utilized in both industrial
and academic settings. Specifically, DCN comprises two main
components: the cross network and the deep network. The
cross network, defined by its cross layers, is designed to model
explicit feature interactions. Each cross layer is formulated as:

z(l+1) = z(0)z(l)
⊺

w(l) + b(l) + z(l), (3)

where z(l+1), z(l) ∈ Rd are the input and output column
vectors from the l-th cross layer, and w(l),b(l) ∈ Rd are the
trainable parameters in the l-th cross layer. On the other hand,
the deep network is a series of fully connected layers designed
to capture complex and non-linear interactions between the
input features:

h(l+1) = ReLU(W(l+1)h(l) + b(l)), (4)

where h(l) ∈ Rdl ,h(l+1) ∈ Rdl+1 are the input and output of
the l-th hidden layer, respectively, and W(l) ∈ Rdl+1×dl are
the learnable parameters in the l-th layer.

For a specific user i and item j, z(0) = h(0) = zij . The
outputs of both networks are then concatenated, and fed to a
two-class logits layer to generate the final prediction:

pij = σ
(
[z(L1) ∥ h(L2)]wlogits

)
, (5)

where z(L1) ∈ Rd1 ,h(L2) ∈ Rd2 are the L1-th and L2-th
layer outputs from the cross and deep network respectively,
wlogits ∈ Rd1+d2 is the weight vector in the logits layer, and
σ(x) = 1/(1+e−x). The DCN model is then trained with the
binary cross entropy loss:

L =− 1

N

∑
{i,j}∈Tr

yij log(pij)+

(1− yij) log(1− pij) + λ
∑
l

∥w(l)∥2, (6)
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Fig. 1. (a) The table encoder for user/item ID embeddings; (b) The graph-enhanced user/item ID encoder; (c) The paradigm of performing CTR prediction;
(d) The overall framework of our strategy explained in steps.

where Tr denotes the training set of positive and negative pairs,
pij is the predicted interaction probability between user i and
item j, yij refer to the binary label (1 for positive and 0 for
negative pairs), and λ is the L2 regularization coefficient.

B. A Naive Graph-based Framework to Enhance Existing
Methods on CTR Prediction

In this section, we first introduce the definition of the user-
item bipartite graph that depicts rich topological relationships
such as co-purchase or shared interests, and then describe how
it can be naively incorporated to existing CTR methods in their
training processes. Formally, we denote the interaction matrix
M ∈ {0, 1}|U|×|I|, where mij = 1 represents an observed
positive interaction between user i and item j, and mij = 0
otherwise. The interaction graph is defined as G = (V, E),
where V = U ∪ I is the set of nodes, and E = {(i, j)|∀i ∈
U ,∀j ∈ I,mij = 1} is the set of edges.

A graph-based encoder utilizes the interaction bipartite
graph to enhance the ID embedding quality. Unlike a table
encoder which independently encodes the users and items,
when generating the user and item embeddings, a graph en-
coder additionally leverages their graph relationships (e.g., co-
purchase, shared interests, etc). We depict the graph encoder
in Figure 1 (b).

Most existing graph-enhanced CF methods focus on scenar-
ios without the incorporation of contextual features, such as
NGCF [14] and LightGCN [15]. However, whether or not their
effectiveness can be transferred to CTR methods needs further
investigation. Since the message passing mechanism [14], [15],
[25] in graph-enhanced CF methods is the key to extracting

graph knowledge, a natural way to extend CTR methods
with graph knowledge is to include this mechanism in their
paradigms. Following this path, we adapt a well-studied linear
message passing mechanism [15] to existing CTR methods.

Specifically, let fg(·, ·) : G ×x → Rd be the graph encoder.
For user i and item j, fg(·, ·) conducts message passing in
each layer to propagate and aggregate information from the
neighborhood. The graph-encoded embedding for node i (user
or item) is formulated as follows:

zi = fg(G, xi) =

L∑
l=0

alz
(l)
i ,

where z(l)i =
∑
v∈Ni

1√
|Ni|

√
|Nj |

z(l−1)
j and z(0)j = f(xj),

(7)

In Equation (7), z(l)i is the embedding for node i in layer l, Ni

is the set of neighbors for node i in G, and al is the readout
coefficient for each layer-l’s embeddings. With the obtained
graph-based user and item ID embeddings, we can construct
the input features following Equation (2). These input features
can further be fed into any CTR method (e.g., DCN) to predict
the interaction probabilities.

C. The Benefit of Graphs to CTR Methods

In comparison with user and item ID embeddings obtained
from a table encoder as described in Section III-A, those
obtained from a graph encoder as introduced in Section III-B
possess additional graph topological knowledge. To empir-
ically verify the benefit of such graph knowledge to CTR



methods, we design an experiment where all comparison
models are identical except their encoders. Specifically, we
compare the recommendation performance of a DCNV2 [1]
with a table encoder and that of a DCNV2 with a graph
encoder. Since the graph encoder additionally incorporates
graph knowledge to ID embeddings, and these two frameworks
only differ in the encoding, the recommendation performance
gap can indicate how integrating graph knowledge affects the
CTR method.

In this experiment, we train all models on four benchmark
datasets, Yelp2018 [11], Amazon-Books [30], MovieLens-
1M [38] and Anime [39]. We evaluate the models by both the
predictive metric (i.e., AUC) and the ranking-based metrics
(i.e., recall and NDCG). Their results are the averaged per-
formance under five random seeds and are shown in Table I,
where the Tab. columns represent results of the DCNV2 with
a table encoder, and Graph columns refer to those of the
DCNV2 with a graph encoder.

Compared with DCNV2 equipped with a table encoder, we
observe that DCNV2 equipped with a graph-based encoder
consistently surpasses its counterpart across the four datasets
and all metrics. Adopting a graph-based encoder not only
yields higher AUC and lower logloss, but also leads to better
ranking abilities demonstrated by higher values in recall and
NDCG. The enhancement suggests that the additional graph
knowledge incorporated in the graph-based ID embeddings
helps improve both the predictive and ranking abilities of
the target CTR methods. We emphasize that the enhanced
ranking abilities are essential, as CTR models primarily focus
on binary classification, yet the fundamental objective in
recommendation is to rank the items. In practice, CTR models
are extensively used as ranking mechanisms to rank recalled
items, aligning closely with their core operational use. A
CTR model yielding higher ranking-based metrics suggests its
stronger ability to rank more relevant items to the top of the
lists, which thus leads to higher-qualified recommendations.

However, this integration incurs a noticeable increase in
computational overhead. It incurs on average ∼480% more
overheads for the total training time, and ∼605% more for the
total testing time. These excess computational overheads arise
from the message passing operations described in Equation (7)
– to acquire the ID embedding of a user/item, the model is
required to query representations of all nodes within the 2-hop
neighborhood of the node to conduct the further aggregation
in between. Moreover, this phenomenon can be further aggra-
vated on dense and large graphs where the average number
of neighbors per node is large. For example, it encounters
∼1049% more time in training and ∼1261% more in testing in
the Anime dataset. Therefore, in industrial applications where
billions of users and items construct a massive graph, simply
substituting the table encoder with a graph-based encoder is
prohibitively expensive and hence impractical.

TABLE I
COMPARATIVE PREDICTIVE AND RANKING RESULTS OF DCNV2 [1] WITH
A TABLE ENCODER (DENOTED UNDER THE TAB. COLUMNS), AND THOSE

OF DCNV2 WITH A GRAPH ENCODER (DENOTED UNDER THE GRAPH
COLUMNS.

Metric AUC ↑ Logloss ↓

Dataset Tab. Graph %∆ Tab. Graph %∆

ML-1M 81.97 82.21 0.30 51.34 51.00 -0.65
Yelp2018 74.51 74.69 0.25 55.42 55.19 -0.41
Amazon-book 80.89 81.07 0.22 39.23 39.06 -0.44
Anime 84.66 84.89 0.27 47.35 47.52 0.35

Metric Recall@10 ↑ Recall@20 ↑

Dataset Tab. Graph %∆ Tab. Graph %∆

ML-1M 10.73 11.72 9.25 16.81 17.93 6.66
Yelp2018 4.25 4.30 1.18 9.87 10.23 3.59
Amazon-book 3.28 3.73 13.79 7.53 8.30 10.23
Anime 15.73 16.97 7.92 23.76 24.91 4.84

Metric NDCG@10 ↑ NDCG@20 ↑

Dataset Tab. Graph %∆ Tab. Graph %∆

ML-1M 10.87 12.31 13.26 12.59 13.93 10.59
Yelp2018 2.20 2.16 -1.91 3.75 3.79 1.23
Amazon-book 1.92 2.09 8.98 3.14 3.43 9.23
Anime 13.90 15.73 0.13 16.41 18.07 10.09

Metric Time (s) / Train Epoch ↓ Inference Time (s) ↓

Dataset Tab. Graph %∆ Tab. Graph %∆

ML-1M 1.81 4.06 124.31 0.10 0.24 140.00
Yelp2018 3.53 15.18 330.03 0.17 0.88 417.65
Amazon-book 5.56 29.53 431.12 0.25 1.76 604.00
Anime 9.05 58.30 544.20 0.47 3.52 648.94

D. A Simple yet Effective Solution: Test-time Augmentation
for CTR Methods

Although the introduced graph knowledge helps improve
the CTR methods, significant computational overheads come
along as well. The majority of computational overheads are
brought by training with the graph encoder – the encoder
repetitively performs the computationally expensive message-
passing operation during training, where such an operation is
conducted on every iteration.

To address the acute problem of the growth of computational
resources, we divert the integration of graph knowledge from
the training phase to the testing time and propose a novel strat-
egy, called TagCTR, as shown in Figure 1 (d). Injecting graph
knowledge at testing time enjoys two benefits: (i) TagCTR
obviates the forward passing and backpropagation entailed
by message passing during training in Equation 7, whose
computational overhead increases quadratically wrt the dataset
density [40], [41], and (ii) TagCTR avoids the computational
overheads brought by repetitively performing message passing
during training since it only performs message passing once
at testing time. TagCTR can be decoupled into four steps
illustrated in the following.

Step 1: Constructing Similarity Matrices
The first step of TagCTR is to construct two similarity matrices
within users and items. Specifically, the similarity matrix
within users, denoted as Au, and the matrix within items,
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denoted as Ai, both depict the co-purchase relationship. The
two matrices are formulated based on the interaction matrix
M:

Au = D− 1
2

u ÂuD− 1
2

u , Âu = MM⊺,

Ai = D− 1
2

i ÂiD
− 1

2
i , Âi = M⊺M,

(8)

where Du ∈ R|U|×|U| and Di ∈ R|I|×|I| are diagonal
matrices with Du/i[k, k] =

∑
j Au/i[k, j]. Intuitively, Âu[i, j]

represents the number of items interacted with both user i and
j. Similarly, Âi[k, j] represents the number of users interacted
with both item k and j. For popular users/items associated
with massive interactions, their corresponding entries in Âu/i

tend to numerically dominate the corresponding entries of
unpopular users/items associated with relatively fewer inter-
actions. In other words, the similarity scores between popular
users/items are consistently larger than those between unpopu-
lar users/items. To remove the bias caused by node popularity
(i.e., node degree), we further normalize Âu/i by accounting
for the varying degree of each user/item, and denote the nor-
malized similarity matrices as Au/i. This normalization step
prevents nodes (users or items) with disproportionately high
degrees from occupying overly high similarity scores [25].
Therefore, we regard Au/i as the similarity matrices of
users/items.

Step 2: Retrieving Relevant User/Item Candidates
TagCTR then retrieves relevant users and items based on the
similarity matrices Au/i. Specifically, for user i, we obtain
nk users with the corresponding top-nk similarity scores in
Au[i], denoted as Ui, where Au[i] refers to the i-th row
of Au. Similarly, for item j, we obtain nk items with the
corresponding top-nk similarity scores in Ai[j], denoted as
Ij . The corresponding 2nk similarity scores in Au/i are
extracted to further calculate the aggregation weights of the
later constructed user-item pairs. Intuitively, the higher the
user/item similarity score is, the more aggregation weights
should be assigned to the involved user-item pairs.

Step 3: Constructing Relevant User-item Pairs
Since the users and items are selected based on the similarities
in Au/i, which is constructed based on the collaborative

filtering signals in M, the interaction signals between the se-
lected users and items naturally contain structural knowledge.
Consequently, TagCTR constructs a set of relevant user-item
pairs by combining each user in Ui with each item in Ij . This
set contains n2

k pairs and is defined as {Mij : (u, v)|∀u ∈
Ui,∀v ∈ Ij}. For each user-item pair in Mij , we calculate
its weight as the multiplication of the corresponding user and
item similarity scores, as shown in the middle of Figure 2.
We denote the weight matrix for all user-item pairs in Mij as
Weight(Mij), where Weight(Mij)[u, v] represents the weight
for the user u and item v pair.

Step 4: Label Aggregation Among Relevant Pairs
After obtaining the n2

k user-item pairs, TagCTR queries the
CTR model for the corresponding n2

k inference results, and ag-
gregates them based on each pair’s weight Weight(Mij)[u, v]:

p′ij =
∑

(u,v)∈Mij
Weight(Mij)[u, v] ∗ r(zuv)∑

(u,v)∈Mij
Weight(Mij)[u, v]

, (9)

where zuv = [f(xu) ∥ f(xv) ∥ h(cuv)] is the embedded fea-
tures and r(·) refers to an arbitrary trained CTR model such as
the one we describe in Section III-A. The aggregated inference
result p′ij is the final output of TagCTR.

Although Weight(Mij) is feasible to aggregate the in-
ference results, we notice that the contribution proportion
of the most similar user-item pair (i.e., pairs constructed
with the most similar user and item) is too small. For the
example in Figure 2, the most similar pair only contributes
to 1/(1 + 0.25 + 0.5 + 0.125) ≈ 53% of the final result.
This overly small proportion may deviate the final result too
much from the prediction of the original user-item pair, and
thereby downgrade the performance. To resolve this issue,
we adopt a pair-wise aggregation mechanism: (i) we first
normalize the weights in Weight(Mij) by dividing them by
the maximum value in the matrix. This step normalizes the
values in Weight(Mij) between 0 to 1; (ii) we further modify
the aggregation weight for the most similar pair (i.e., the pair
with the weight value as 1) by considering aggregating the
pairwise inference result between this pair and the other pairs,
as the following:

Weight(Mij)[u
′, v′] =

∑
(u,v)̸=(u′,v′)

(1− Weight(Mij)[u, v]),

where u′, v′ = argmax
(u,v)

Weight(Mij)[u, v].

(10)

The final result of TagCTR is derived using Equation 9 with
the maximum entry in Weight(Mij) modified as above. In the
example in Figure 2, the proportion of the most similar pair is
modified to (1−0.25)+(1−0.5)+(1−0.125) = 2.125. This
modified maximum weight is approximately 71% of the sum
of the weights of all pairs, which is higher than 53% before its
modification. In the following experiment section, we validate
this design and empirically demonstrate how the proportion
changes as nk increases.



TABLE II
THE RANKING PERFORMANCE OF APPLYING OUR APPROACH TO THE BASELINES OVER FOUR BENCHMARK DATASETS, WHERE ‘Original’ REPRESENTS

THE PERFORMANCE EVALUATED FROM THE ORIGINAL MODELS, ‘+Tag.’ REPRESENTS THE PERFORMANCE EVALUATED FROM THE MODELS APPLIED
WITH TAGCTR, AND ‘%∆’ REPRESENTS THE RELATIVE CHANGE IN PERFORMANCE OF APPLYING TAGCTR TO THE ORIGINAL MODELS.

NDCG@10 NDCG@20 Recall@10 Recall@20

Model Original +Tag. %∆ Original +Tag. %∆ Original +Tag. %∆ Original +Tag. %∆

ML-1M

NFM 9.42 9.44 0.21 10.88 10.96 0.74 8.97 9.03 0.69 14.26 14.50 1.67
DeepFM 10.17 10.41 2.32 11.70 12.02 2.72 9.61 9.98 3.87 15.08 15.68 3.98
xDeepFM 8.08 8.17 1.06 9.65 9.82 1.72 8.04 8.19 1.92 13.13 13.52 3.00
DCN 10.07 11.19 11.08 11.58 12.73 9.98 9.47 10.17 7.33 14.97 16.11 7.64
DCNv2 10.76 10.91 1.39 12.26 12.52 2.10 10.02 10.26 2.39 15.55 16.12 3.69
AutoInt 8.72 9.18 5.23 10.32 10.82 4.84 8.66 9.19 6.07 13.96 14.60 4.60
EulerNet 8.91 9.11 2.34 10.51 10.96 4.32 8.73 9.24 5.86 14.08 14.83 5.28

Yelp2018

NFM 2.92 3.35 14.58 4.58 5.10 11.35 5.28 6.06 14.77 11.23 12.30 9.58
DeepFM 1.95 2.18 11.78 3.52 3.83 8.63 3.90 4.33 10.86 9.66 10.32 6.86
xDeepFM 2.53 2.76 9.34 4.12 4.42 7.28 4.68 5.11 9.19 10.45 11.09 6.11
DCN 2.20 2.46 11.73 3.75 4.12 10.04 4.25 4.75 11.78 9.87 10.75 8.93
DCNv2 2.07 2.30 10.81 3.63 3.94 8.42 4.06 4.49 10.55 9.77 10.47 7.16
AutoInt 1.98 2.20 11.20 3.53 3.82 8.33 3.92 4.32 10.37 9.57 10.21 6.64
EulerNet 3.39 3.68 8.74 5.08 5.44 7.09 5.84 6.34 8.59 11.90 12.61 5.93

Amazon-Books

NFM 2.67 3.04 13.69 4.06 4.47 10.25 4.52 5.09 12.42 9.10 9.81 7.85
DeepFM 2.40 2.65 10.69 3.69 4.01 8.50 4.00 4.43 10.86 8.41 9.01 7.04
xDeepFM 2.24 2.46 9.74 3.46 3.75 8.32 3.69 4.08 10.62 7.88 8.46 7.34
DCN 1.91 2.20 15.15 3.13 3.52 12.40 3.28 3.81 16.23 7.53 8.27 9.94
DCNv2 2.42 2.68 10.65 3.76 4.09 8.72 4.16 4.60 10.52 8.67 9.30 7.31
AutoInt 2.35 2.57 9.63 3.65 3.94 7.89 3.93 4.30 9.47 8.36 8.92 6.75
EulerNet 2.46 2.64 7.57 3.68 3.91 6.37 3.93 4.30 9.30 8.08 8.57 6.14

Anime

NFM 14.74 14.68 -0.37 17.60 17.69 0.55 17.33 17.71 2.19 26.11 26.92 3.10
DeepFM 14.22 14.58 2.56 16.55 17.59 6.30 17.09 17.70 3.61 26.02 26.85 3.20
xDeepFM 15.09 15.08 -0.01 18.19 18.30 0.60 18.12 18.36 1.34 27.50 28.11 2.23
DCN 13.90 14.17 1.94 16.41 17.03 3.77 15.73 16.50 4.90 23.76 25.26 6.32
DCNv2 14.98 15.30 2.10 17.66 18.12 2.62 17.08 17.73 3.79 25.65 26.72 4.19
AutoInt 12.32 13.27 7.66 15.00 16.05 7.04 14.59 15.99 9.54 22.75 24.44 7.45
EulerNet 12.91 13.42 3.95 15.39 16.03 4.20 14.86 15.73 5.83 22.74 23.96 5.37

IV. EXPERIMENT

In this section, we first outline experimental setups in
Section IV-A. Then in Section IV-B, we apply TagCTR to
multiple well-trained CTR methods and evaluate them through
both the predictive and ranking-based metrics. Furthermore,
in Section V we show that TagCTR is a much more efficient
strategy than the framework mentioned in Section III-B. Fi-
nally, in Section VI, we analyze how the number of considered
neighboring user/item nk affects TagCTR.

A. Setup

1) Datasets: We select four publicly available recommen-
dation benchmark datasets for the experiments. Specifically,
Yelp2018 [11] and Amazon-Books [30] are relatively sparse
compared to MovieLens-1M [38] and Anime [39]. The statis-

tics of the datasets are shown in Table III. For all datasets, we
convert explicit user-to-item ratings to binary labels through
thresholding. The rating for ML-1M, Yelp2018, and Amazon-
Books ranges from 1 to 5, and we adopt 4 as the threshold. For
Anime, the ratings range from 1 to 10 and we set the threshold
as 7. We randomly split datasets with a ratio of 0.8/0.1/0.1 for
training, validation, and testing, respectively.

2) Baselines: We select seven models as our baselines,
including NFM [11], DeepFM [12], xDeepFM [35], DCN [13],
DCNV2 [1], AutoInt [36], and EulerNet [37]. Specifically:
NFM [11], DeepFM [12], and xDeepFM [35] combine the
advantages of Factorization Machines [34] and deep neural
networks to capture complex non-linear and high-order fea-
ture interactions. DCN [1], [13] learns explicit and implicit
feature interactions through a cross-network and a deep neu-



TABLE III
THE STATISTICS OF FOUR BENCHMARK DATASETS.

Dataset #User #Item #Interaction Sparsity

ML-1M 6,041 3,261 998,539 0.9493
Yelp2018 77,278 45,639 2,103,896 0.9994
Amazon-Books 68,498 65,549 2,954,716 0.9993
Anime 55,119 7,364 6,270,078 0.9846

ral network, respectively. AutoInt [36] utilizes self-attentive
neural networks to learn more effective feature interactions.
EulerNet [37] learns the interactions of high-order features by
transforming their exponential powers into linear combinations
of the modulus and phase of complex features.

3) Evaluation: For all the baselines, we employ the
AdamW optimizer for optimization and adopt binary cross-
entropy as the loss function to train them on the training
set. We run a fixed number of grid searches over all the
baseline models’ provided hyper-parameters for their best
AUC performance on the validation set. With the best hyper-
parameters, we train the models under five random seeds and
save all the checkpoints. For each baseline model, we evaluate
our TagCTR with the inference results from the corresponding
saved models. We tune the number of candidates nk with
the same amount of grid-searches and re-evaluate the model
performance. The ranking ability is evaluated by two ranking-
based metrics, NDCG@K and Recall@K, both of which
assign higher scores to models that accurately rank the most
relative/highly rated items. Following previous works, we
choose the predictive metric as the AUC score. All reported
results are averaged over the results under the five random
seeds. The training and inference processes are conducted on
an NVIDIA RTX 3090 GPU with 24 GB of memory, and the
user-user and item-item similarity matrices are pre-computed
on a standard commercial CPU with 128 GB of RAM. We
adopt the recommender system library named Recbole [42] to
conduct all the experiments.

B. Performance Improvement by TagCTR

For all the baseline models, we first evaluate their recom-
mendation performance on the four benchmark datasets by
the ranking-based metrics, and denote the results under the
Original columns in Table II. We apply our TagCTR to each
of the baseline models, and report the re-evaluated ranking
performance under the +TagCTR columns in Table II. Addi-
tionally, we report the relative performance change of applying
TagCTR to the original method and denote the statistics under
the %∆∆∆ columns. From the table, we observe that: (i) our
strategy stably improves the performance over the original
model, and only demonstrates a slight performance downgrade
in some rare cases (i.e., NFM and xDeepFM in Anime).
These results validate that our strategy is generally effective
in improving ranking performance across various CTR models
and benchmark datasets. (ii) the improvements are relatively
evident in sparse datasets (i.e., Yelp2018, Amazon-Books)
than dense datasets (i.e., ML-1M, Anime). This is because,

in sparse datasets where the number of interactions associated
with each node is relatively small, the node embeddings
receive less collaborative filtering signals from their neighbors
during training. Therefore, at testing time, our TagCTR is
able to compensate for insufficient training of the user/item
embeddings with the injected graph knowledge. In contrast,
user/item embeddings trained in dense datasets receive more
training signals from a larger number of neighbors, resulting
in less space for improvement at testing time by TagCTR.

In addition to the ranking-based metrics, we also evaluate
our strategy with AUC as shown in Table IV. In comparison
with the original CTR models, we see that our strategy yields
a slight performance downgrade in dense datasets (i.e., ML-
1M, Anime), and comparable performance in sparse datasets
(i.e., Yelp2018, Amazon-books). We credit the decreased AUC
in dense graphs to the adoption of binary cross-entropy loss
in training: when the models are trained on dense graphs,
their abilities to distinguish between relevant and irrelevant
items are more enhanced than those trained on sparse graphs
– the user and item embeddings receive more training signals
from a larger number of neighboring nodes. Therefore, any
modification in predicted scores can impair the well-trained
distinguish abilities, resulting in a downgraded AUC.

C. Beyond AUC: Practical Considerations

In terms of the practical deployment, we particularly em-
phasize that the slightly AUC metric downgrade is both rea-
sonable and acceptable: (i) our strategy modifies the predicted
scores by aggregating all relevant user-item predictions, which
directly affect the item rankings. Ranking-based metrics, such
as NDCG@K and Recall@K, are very sensitive to slight
modifications of the predicted scores, as they directly affect
the item rankings. In contrast, AUC is non-linearly affected
by subtle modifications in predicted scores. As long as the
predicted score is within the decision threshold, the corre-
sponding AUC does not change. Therefore, AUC is less prone
to demonstrate the direct influence of the modifications in
predicted scores, and the deployment remains near the original
performance level; (ii) More importantly, practical RecSys is
expected to output the recommended items orderly, rather than
equally showing the users a bundle of items. Although CTR
methods are conventionally trained for binary classification,
its fundamental objective in recommendation is to perform a
ranking task. In practice, CTR models are extensively used as
ranking tools to rank items that have been recalled, aligning
closely with their core operational use. Therefore, enhancing
CTR methods’ ranking capabilities directly contributes to the
quality of practical recommendations.

V. TIME EFFICIENCY FOR TAGCTR

We depict the performance and time relative to ones for
DCN in Figure 3. From the figure, we see that applying
TagCTR to DCN achieves performance comparable to that
of the naive graph-enhanced DCN, with only a marginal
extra time overall. Applying TagCTR to a well-trained CTR
method does not introduce additional training time, and only



TABLE IV
THE COMPARED AUC PERFORMANCE OF APPLYING OUR APPROACH TO THE BASELINES, WHERE ‘Original’ REPRESENTS THE PERFORMANCE

EVALUATED FROM THE ORIGINAL MODELS, ‘+Tag.’ REPRESENTS THE PERFORMANCE EVALUATED FROM THE MODELS APPLIED WITH TAGCTR, AND
‘%∆’ REPRESENTS THE RELATIVE CHANGE IN AUC OF APPLYING TAGCTR TO THE ORIGINAL MODELS.

Dataset ML-1M Yelp2018 Amazon-Books Anime

AUC Original +Tag. %∆ Original +Tag. %∆ Original +Tag. %∆ Original +Tag. %∆

NFM 81.51 81.09 -0.52 74.35 74.40 0.07 80.76 80.85 0.11 84.81 83.98 -0.99
DeepFM 82.11 81.66 -0.55 74.61 74.66 0.06 80.97 81.05 0.10 84.84 84.09 -0.88
xDeepFM 81.09 80.77 -0.40 74.56 74.61 0.06 80.95 81.03 0.09 84.75 83.89 -1.02
DCN 81.97 81.45 -0.63 74.51 74.55 0.06 80.89 80.99 0.12 84.66 83.79 -1.03
DCNv2 82.13 81.63 -0.62 74.51 74.56 0.07 80.82 80.92 0.12 84.61 83.78 -0.98
AutoInt 82.10 81.62 -0.58 74.60 74.64 0.06 80.95 81.03 0.11 84.69 83.76 -1.09
EulerNet 82.10 81.62 -0.59 74.59 74.62 0.03 80.96 81.04 0.10 84.67 83.80 -1.03
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Fig. 3. The average relative performance is averaged over the four benchmark
datasets, and is scaled based on the original model performance. The relative
training and inference time is calculated wrt that of the original model, and
the overall time is the summation of training and inference time.

quadratically increases the inference time wrt nk. For each
dataset, the users and items most relevant nk neighbors can
be pre-computed and applied to all CTR methods, making
the corresponding computational overhead one-off relative to
a dataset. Therefore, applying TagCTR to well-trained CTR
methods effectively enjoys the merits while introducing little
to no additional time overall.

VI. EFFECT OF nk TO TAGCTR

The only hyper-parameter of our TagCTR is the number of
relative user/item candidates, denoted as nk. To analyze how
the number of relative user/item candidates nk in TagCTR
affects the performance, we apply TagCTR to DCN with
varied nk in {1, 2, 5, 10} to compare the performance. The
results are shown in Figure 4. Note that nk = 1 refers
to the original DCN model. From the figure, we observe
that TagCTR, when applied to dense graphs such as Ml-1M
and Anime, demonstrates improved performance with smaller
nk’s. Conversely, on sparse graphs like Yelp2018 and Amazon-
books, TagCTR yields better results with larger nk’s. This is
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Fig. 4. The ranking-based performance of DCN to the varied number of
neighbors nk in label aggregation.

because the value of nk controls the range of the neighborhood
considered for graph knowledge extraction. When nk is small,
the extracted graph knowledge is sufficient to improve CTR
methods trained on dense graphs but insufficient for those
trained on sparse graphs.

We further analyze how nk affects the resultant contribution
proportion of the most similar user-item pair in TagCTR.
Specifically, we apply TagCTR to DCN with varied nk in {1,
2, 5, 10}, and depict the contribution proportion distribution of
the most similar user-item pair in Figure 5. From Figure 5, we
see that as nk increases (i) the contribution proportion for the
most similar user-item pair increases, and (ii) the distribution is
more concentrated (i.e., it spans fewer values). Intuitively, the
two phenomena suggest that within a close neighborhood (i.e.,
nk is small), TagCTR adjusts the contribution proportion of
the most similar pair in a wider range with relatively smaller
numerical values. Conversely, within an extensive neighbor-
hood (i.e., nk is large), TagCTR conservatively adjusts the
proportions in a tighter range with relatively larger values.
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Fig. 5. Contribution proportion distribution for the most similar user-item pair,
where most common proportion values are highlighted and denoted above.

VII. CONCLUSION

In this work, we investigate how to efficiently leverage
graphs to CTR prediction where contextual features are avail-
able. We first demonstrate a naive graph-enhanced framework,
where graph knowledge is incorporated in the encoder of CTR
methods via the message-passing operation. While this frame-
work is empirically effective in improving recommendation
performance, the substantial computational overheads entailed
by training with a graph encoder render this framework
prohibitively expensive for real-world applications. In light of
this, we propose TagCTR, a test-time augmentation strategy
for CTR methods that utilizes graphs only once during testing
to improve the target methods. Our TagCTR can be used as
a plug-and-play module, and can be easily employed vari-
ous CTR methods with little to no additional computational
cost. We conduct comprehensive experiments across four
benchmark datasets with various densities to demonstrate that
TagCTR brings noticeable ranking performance improvements
(i.e., 8.1% on average) during testing time with little to no
additional computational overheads (i.e., 0.5% on average).
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